摘要:
The present disclosure describes a system and a method for generating energy from geothermal sources. The system includes an injection well and a production well extending underground into a rock formation, a first lateral section connected to the injection well and a second lateral section connected to the production well, the first and second lateral sections connected with a multilateral connector, defining a pressure-tested downhole well loop within the rock formation and in a heat transfer arrangement therewith. The downhole well loop cased in steel and cemented in place within the rock formation. The downhole well loop to receive working fluid capable of undergoing phase change between liquid and gas within the downhole well loop as a result of heat transferred from the rock formation. The system also includes a pump to circulate working fluid, a turbine system to convert the flow of working fluid into electricity, and a cooler.
摘要:
A geothermal power plant operating on high pressure geothermal fluid includes a primary separator for separating the geothermal fluid into two channels, one containing high pressure steam and the other containing high pressure liquid. A primary steam turbine in the high pressure steam channel is responsive to high pressure steam for generating electricity and producing heat depleted high pressure steam. A secondary separator separates the heat depleted high pressure steam into a steam component and a liquid component. A primary heat exchanger is responsive to the high pressure liquid and the steam component for transferring heat to said steam component thereby producing low pressure steam and cooled high pressure liquid. At least one power plant module includes a low pressure steam turbine responsive to the low pressure steam for producing electricity and heat depleted low pressure steam; a condenser/vaporizer containing an organic fluid for receiving the heat depleted low pressure steam and converting it into condensate, and for vaporizing the organic fluid; an organic vapor turbine responsive to vaporized organic fluid produced by the condenser/vaporizer for generating electricity and for producing heat depleted organic fluid; a condenser for condensing the heat depleted organic vapor into a liquid; a preheater for heating the liquid; a pump for returning heated liquid from the preheater to the condenser/vaporizer; and a conduit for directing condensate from the condenser to the preheater.
摘要:
Geothermal energy is recovered by (1) introducing into a subterranean heat exchange medium which is in heat exchange with a high temperature formation a liquified vapor which will vaporize at the conditions of the medium; (2) vaporizing the liquified vapor; (3) confining the liquified vapor until pressurized; and (4) recovering pressurized vapor having thermal and pressure-volume energy converted from the high temperature formation.
摘要:
Process and system for recovery of energy from geothermal brines and other water containing or hot water sources, which comprises direct contact heat exchange between the brine or hot water, and a working fluid, e.g. n-butane, in a heat transfer column, the heat transfer column being operated in the subcritical pressure region of the working fluid, preferably close to or approaching the apex of the saturated vapor curve for such working fluid on the Mollier enthalpy-entropy diagram for such fluid. The heated working fluid exiting the top of the heat transfer column is expanded through an expander to produce work. The discharge from the expander is cooled to condense working fluid which is separated in an accumulator, from condensed water vapor present in the working fluid, and the condensed working fluid is pressurized and fed back to the heat transfer column. Water from the accumulator can be fed to an H.sub.2 S removal system where good quality water can be recovered. Cooled brine or water from the bottom of the heat transfer column and water from the accumulator are fed to a flashing device such as a flash drum, and the working fluid flashed off is compressed and returned to the cooler at the expander discharge, for condensation and recovery. Also, entrained liquid phase working fluid can be separated from the cooled brine or water prior to flashing, and returned to the system. Uncondensible gases plus some working fluid losses are vented from the accumulator, and preferably the system can be operated under conditions to vent a minimum of uncondensible gases from the accumulator, and thereby reduce working fluid losses, Any accumulator vent gas can be fed to the H.sub.2 S removal system.
摘要:
Process and system for recovery of energy from geothermal brines and other water containing or hot water sources, which comprises direct contact heat exchange between the brine or hot water, and a working fluid, e.g. n-butane, in a heat transfer column, the heat transfer column being operated in the subcritical pressure region of the working fluid, close to or approaching the apex of the saturated vapor curve for such working fluid on the Mollier enthalpy-entropy diagram for such fluid. The heated working fluid exiting the top of the heat transfer column is expanded through an expander to produce work. The discharge from the expander is cooled to condense working fluid which is separated in an accumulator, from condensed water vapor present in the working fluid, and the condensed working fluid is pressurized and fed back to the heat transfer column.Cooled brine or water from the bottom of the heat transfer column and water from the accumulator are fed to a flashing device such as a flash drum operated at a pressure less than that in the accumulator, and the working fluid flashed off is compressed and returned to the cooler at the expander discharge, for condensation and recovery. Uncondensible gases plus working fluid losses are vented from the accumulator. Cold brine or water is discharged from the flashing means such as the flash drum, and any scale formed in the heat transfer column is discharged from the bottom thereof.
摘要:
Hot fluid which may contain salts and other dissolved minerals is passed through a direct contact heat exchanger in heat exchange relationship with a working fluid that has a specific gravity sufficiently below the specific gravity of the fluid so that it may pass from the bottom to the top of the heat exchanger chamber in contact with the fluid. The pressure of the chamber is selected to provide a certain mixture of working fluid and hot fluid at the output of the power extracting device of the system. The working fluid is selected so that the salts and other minerals in the fluid are relatively insoluble therein. The working fluid is vaporized in the exchanger and the vaporized working fluid and any steam mixed therewith are passed through a power extracting gas expansion device. The working fluid is separately condensed and recirculated.
摘要:
A rock-exploitation method based on thermodynamic cycles utilizing an in-situ energy source, which includes sinking at least one well as far down as, or deeper than a producing horizon, admitting stratal fluid into the well, discharging the fluid from the well above or below the producing horizon, and injecting a heat-carrying agent into the well where it circulates and exchanges heat with the rock through the fluid which is in contact with the rock and acts as a heat-carrying agent in an underground circuit including said means for admission of fluid, a section of the well between the fluid inlet and the fluid outlet, and the fluid-permeable rock mass adjacent to said section of the well.
摘要:
A geothermal energy transfer and energy utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbinedriven pump at the well bottom for pumping the hot solute-bearing water or brine at high pressure and always in liquid state to the earth''s surface, where it is used by transfer of its heat to a closed-loop heat exchanger-turbine-alternator combination for the generation of electrical power. The steam exhausted from the deep well pump-driving turbine is also returned to the earth''s surface, where its residual energy is efficiently extracted in the surface power generating system and where it is then converted into cooled water for return to the deep well pumping system. Residual concentrated solute-bearing water is normally pumped back into the earth.
摘要:
Method and apparatus for the nonpolluting generation of electrical power by the economic utilization of geothermal energy that is accessible through widespread sources of regenerative geothermal hot water. A well provides access to a geothermal hot water source having a temperature substantially above the flash point for atmospheric pressure, this hot water being conducted through heat exchangers wherein its heat energy is transferred to a power fluid employed in a closed Rankine heat engine cycle to generate electrical power, the water then being injected back into the aquifer. The geothermal hot water is pressurized by deep well pump means to a discharge pressure above its saturated vapor pressure for the source temperature, and a pressure gradient above the saturated vapor pressure is maintained through the heat exchangers, whereby the hot water is restrained from flashing into steam throughout its circuit, thereby avoiding any substantial temperature drop between the source and the heat exchangers and preventing release of any substantial mineral deposits at any point in the circuit. The very small expenditure of power required for such pressurization produces a large increase in total plant power output and efficiency by, among other things, (1) providing a top temperature power fluid Rankine cycle, (2) avoiding fouling of the well and surface equipment with mineral deposits, (3) deriving power from all of the geothermal fluid rather than just a stream fraction thereof, (4) allowing use of a power fluid that is particularly efficient in the available temperature range, and (5) avoiding degeneration of the power fluid source and ecological damage by returning the geothermal fluid to the aquifer.
摘要:
System, method, and apparatus for harnessing geothermal power from superhot geothermal fluid (SHGF) and magma reservoirs. An exemplary system includes a steam separator connected directly to a cased wellbore extending between a surface and the underground reservoir of magma. The steam separator separates a gas-phase fluid from condensate formed from the gas-phase fluid. The system also includes a first set of turbines connected to the steam separator and a condensate tank fluidically connected to the steam separator and the first set of turbines. The first set of turbines is configured to generate electricity from the gas-phase fluid received from the steam separator and the condensate tank is fluidically connected to a fluid conduit that supplies condensate to a terminal end of the cased wellbore.