摘要:
A turbomachinery control system for controlling supercritical working fluid turbomachinery. The control system includes a light emitter to project light through working fluid of the turbomachinery toward a primary light detector provided within a line of sight to the emitter. The system further includes one or more secondary light detectors spaced from the line of sight, and a controller determining one or both of an intensity of light detected by the primary detector relative to the detected light intensity by the secondary detector, and wavelength of light detected by the primary detector relative to wavelength of light detected by the secondary detector. The controller determines the working fluid proximity of the critical point based on one or both of the determined relative intensity and determined relative wavelength, and controlling an actuator to control turbomachinery inlet or outlet conditions in accordance with the working fluid determined proximity of the critical point.
摘要:
A double turbine exhaust duct design and an inline V turbine exhaust duct design that both eliminate the need for the standard T-piece in a turbine exhaust duct assembly, substantially reducing the steam-side pressure drop, minimizing the sub-cooling in the steam cycle (the temperature difference between ACC condensate temperature out and turbine steam temperature), thus improving the overall efficiency of the steam cycle plant heat rate.
摘要:
This is a system that stores energy by compressing atmospheric air and confining it in tanks or caverns, combining the thermodynamic cycle followed by the atmospheric air (Brayton cycle) with another thermodynamic cycle followed by an auxiliary fluid, that is confined in the same cavern within a membrane, following two sections of a Rankine cycle, one during the air compression and entry into the cavern process and the other during the air outlet and turbining process, using heat from the exhaust gases from the turbine as a heat source for an additional Rankine cycle, and being able to use the tanks or caverns for making an extra constant volume heating of compressed air and/or of the auxiliary fluid.
摘要:
An apparatus (10) for compressing and expanding a gas includes a chamber (22), a positive displacement device (24) moveable relative thereto, first and second valves (26, 28) activatable to control flow of gas into and out of the chamber (22), and a controller (80) for controlling activation of the valves (26, 28) that selectively switches operation between a compression and an expansion mode with selective switching between modes being achieved by selectively changing the activation timing of at least one of the valves during the first mode. An energy storage system including the device may be operatively coupled via a rotary device for power transmission to an input/output device, whereby the direction and speed of rotation are preserved during switching, and the input/output device may be synchronized to the grid.
摘要:
Gas Pressure Reduction Generator (GPRG) systems and methods for implementing a GPRG system are provided, where the GPRG systems comprise a gas inlet configured to receive a pressurized gas flow, at least one expander in gas flow receiving communication with the gas inlet wherein the expander is operable to convert the pressurized gas flow into mechanical energy and a depressurized gas flow, and a generator configured to convert the mechanical energy into electrical energy.
摘要:
A novel heat exchange device to provide sufficient amounts of heat within a manifold including a working fluid within heating coils to generate electricity through an external combustion steam engine and electrical generator is provided. Such a novel heat exchanger includes coils that surround a central heating compartment thereby exposing such coils to gradually increasing temperatures such that the working fluid is first vaporized and then is ultimately superheated to a “dry” steam upon the point of egress of the heat exchanger leading to the engine portion. In this manner, greater efficiency in heating of the working fluid is accomplished with all of the fluid converted to a gas under pressure to effectuate the necessary engine, etc., movement for energy production.
摘要:
A supercritical fluid comprises carbon dioxide and at least one disorder-inducing species. The proportion of carbon dioxide to the at least one disorder-inducing species in the supercritical fluid may be sufficient to induce disorder in the fluid. Power generation systems and thermal energy storage systems configured to use the supercritical fluid are described.
摘要:
A steam engine receives steam from a boiler which is heated by hot gas produced by a burner. The flue gas from the boiler is used to heat the body of the steam engine. The body of the steam engine has a plurality of passages which are shaped and dimensioned to receive and pass the flue gas, so that the flue gas heats the body, and thereby increases the power and efficiency of the steam engine.
摘要:
A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
摘要:
Devices and methods for moving a working fluid through a controlled thermodynamic cycle in a positive displacement fluid-handling device (20, 20′, 20″) with minimal energy input include continuously varying the relative compression and expansion ratios of the working fluid in respective compressor and expander sections without diminishing volumetric efficiency. In one embodiment, a rotating valve plate arrangement (40, 42, 44, 46) is provided with moveable apertures or windows (48, 50, 56, 58) for conducting the passage of the working fluid in a manner which enables on-the-fly management of the thermodynamic efficiency of the device (20) under varying conditions in order to maximize the amount of mechanical work needed to move the target quantity of heat absorbed and released by the working fluid. When operated in refrigeration modes, the work required to move the heat is minimized. In power modes, the work extracted for the given input heat is maximized.