Abstract:
A plasma display panel and a method of manufacturing the same are provided to prevent data electrode from being reacted with the sodium component contained in a back glass to change its color or to be cut while the data electrodes are formed on a back plate constructing the plasma display panel, thereby improving the quality of the back plate. The plasma display panel includes a front plate constructed in a manner that a plurality of scan electrodes and sustain electrodes, a first dielectric layer and a protection layer are sequentially formed on a glass substrate, a back plate constructed in a manner that a plurality of data electrodes are formed on a glass substrate, barriers formed between the front and back plates to define discharge cells, and fluorescent materials formed between the barriers. The plasma display panel further has a transparent electrode layer that is at least partially formed between the glass substrate of the back plate and the data electrodes. According to the present invention, a supporting force sufficient for preventing cutting and deformation of the data electrodes is provided and the data electrodes are maintained in a uniform shape to improve the quality of the plasma display panel.
Abstract:
An organic electroluminescent device comprising an organic luminescent substance interposed between a pair of mutually opposed electrodes is characterized in that the device contains at least a compound having the following general formula (I) as the organic luminescent substance. 1 (in the formula, the reference character n is an integer of 3 or higher; and hydrogen bonded to the aromatic ring may be substituted with an optional substituent).
Abstract:
An electron optical system of this invention includes, e.g., an upper electrode having a plurality of apertures, a plurality of middle electrodes having a plurality of aligned apertures, a lower electrode having a plurality of apertures, and a shield interposed between adjacent middle electrodes.
Abstract:
Fluorescent lamp (1) comprising a glass discharge vessel (2) in which a gas is present, which discharge vessel (2) is provided with a tubular end portion (3) having a longitudinal axis, which end portion (3) includes a glass stem (5), wherein an exhaust tube (6) extends axially outward from said stem (5) for supplying and/or discharging gases during the production of the lamp (1), wherein an electrode (8) extends axially inward through the stem (5) for maintaining a discharge in the discharge vessel (2), wherein the inwardly disposed end (10) of the electrode (16) is radially surrounded by a shield (15) for intercepting material emitted by the electrode (16), which shield (15) is mounted on an elongate support (16) which extends inward from the stem (5), and wherein said support (16) extends outward through the stem (5) into the exhaust tube (6).
Abstract:
Disclosed is a cathode supporter for an electric gun in a CRT(Cathode Ray Tube), which can reduce an amount of expensive ceramics glass used, which is filled within the cathode supporter, by removing guide pipes from the cathode supporter, which is conventionally provide with the guide pipes through which guide pins of a beading jig are inserted, to decrease a horizontal length a of the cathode supporter. According to a preferred embodiment of the present invention, the electric gun includes three cathodes for radiating electron beams, a plurality of electrodes for controlling, accelerating and focusing the electron beams, and guide holes formed at both sides of some electrodes among the plurality of electrodes for allowing guide means to be inserted therethrough, wherein the horizontal length of the cathode supporter for supporting the cathodes are smaller than an inside horizontal length of the guide means to prevent any interference from being generated between the cathode supporter and the guide pins. Here, the inside horizontal length of the guide pins corresponds to an inside width W2 between the respective guide holes.
Abstract:
A plasma display device having first and second substrates and a discharge gas filled therebetween includes first and second electrodes extending parallel to each other on a first substrate, and first and second discharge electrode parts extending from the first and second electrodes, respectively, so as to oppose each other. A discharge gap of a substantially constant width is formed between one of the first discharge electrode parts and one of the second discharge electrode parts, the ones opposing each other, the discharge gap being defined by first and second edge parts of the ones of the first and second discharge electrode parts, respectively. The first and second edge parts have lengths longer than widths of the ones of the first and second discharge electrode parts, the widths being measured in directions in which the first and second electrodes extend, respectively.