Abstract:
A cold emitter x-ray tube is provided comprised of a cathode which is a carbon nanotube or nanostructured carbon film which serves as the electron emission source in an x-ray tube, and is positioned on a suitable substrate. The nanostructured carbon film is selected from a group consisting of nanocyrstalline graphite, carbon nanotubes, diamond, diamond like carbon, or a composite of two or more of members of the group. An extraction/suppression grid may be utilized. A metal anode which functions as the x-ray generating target is positioned within the x-ray tube. A high voltage source with negative contact is connected to the emitter and the positive contact connected to the anode target. This single source of high potential serves to provide the electric field, between the emitter and anode, for extraction of electrons from the emitter and to accelerate the electrons to the target for generation of x-rays. X-rays pass through a beryllium window that is an integral part of the vacuum envelope. The x-ray tube may be used for various applications such as portable x-ray spectrometry, portable fluoroscopy, radiation treatment, and the like.
Abstract:
A cathode assembly (43) for a computed tomography scanning system (10) is provided. The cathode assembly (43) includes a one-piece tab assembly (52) for simple and relatively quick installation on a cathode cup (44). In one embodiment, the one-piece tab assembly (52) has two rail portions (56) extending substantially across its length. These rail portions (56) are intended for insertion into channels (50) formed within the cathode cup (44) and for properly locating the one-piece tab assembly (52) in a desired position relative to the filament (46). The assembly (52) further includes two tab portions (58, 58null) located on opposing ends of the rail portions (56). The tab portions (58, 58null) each include a main body portion (62) and a flap portion (54) extending from the main body portion (62). The main body portion (62) extends between the two rail portions (56) and has a mounting surface for attaching the one-piece tab assembly (52) to the cathode cup (44). The flap portions (54) extend substantially perpendicular from the main body portions (62) and direct the electron beam emitted by the filament (46).
Abstract:
A dual filament x-ray tube assembly (16) includes an evacuated envelope (52) having an anode (54) disposed at a first end of the evacuated envelope (52) and a cathode assembly (62) disposed at a second end of the evacuated envelope (52). The cathode assembly includes a variable-length filament assembly (72, 74; 100) which emits electron beams for impingement on the anode (54) at focal spots having varying lengths. The cathode assembly (62) further includes a cathode cup (64, 66, 68; 110, 112) which is subdivided into a plurality of electrically insulated deflection electrodes (64, 66, 68; 110, 112). A filament select circuit (80) selectively and individually heats a portion of the variable-length filament assembly (72, 74). Electron beams emitted from the filament assembly (72, 74) are electrostatically focused and controlled by applying potentials to different ones of the deflection electrodes (64, 66, 68; 110, 112). The x-ray tube assembly (16) provides longer focal spots for thick-slice scanning applications and shorter focal spots for thin-slice scanning applications along with the benefit of electrostatic focusing and control.
Abstract:
The invention relates to an X-ray tube whose cathode arrangement includes a flat electron emitter that is provided with openings. An electrode is arranged on the side of the electron emitter that is remote from the anode of the X-ray tube; this electrode carries a negative potential relative to the electron emitter, which negative potential straightens the electron paths in front of the emitter. These steps result in a favorable ratio of the dimensions of the electron emitter to the dimensions of the focal spot formed on the anode by the emitted electrons.
Abstract:
A multi-beam x-ray generating device includes a stationary field-emission cathode having a plurality of stationary and individually controllable electron-emitting pixels disposed in a predetermined pattern on the cathode, an anode opposing the cathode comprising a plurality of focal spots disposed in a predetermined pattern that corresponds to the predetermined pattern of the pixels, and a vacuum chamber enveloping the anode and cathode. An additional construction is in the form of an a x-ray generating device including a stationary field-emission cathode, the cathode having a planar surface with an electron-emissive material disposed on at least a portion thereof, a gate electrode disposed in parallel spaced relationship relative to the planar surface of the cathode, the gate electrode having a plurality of openings having different sizes, an anode opposing the cathode and spaced therefrom, the anode having a plurality of focal spots aligned with the electron-emissive material, and a vacuum chamber enveloping the anode and cathode, wherein the gate electrode is operable such that the openings can be manipulated to bring at least one beam of electrons emitted from the cathode into and out of registry with at least one of the focal spots. Associated methods are also described.
Abstract:
Methods and apparatus for generating x-ray beams are described. In one embodiment, the method includes operating a cathode to generate an electron beam, directing the electron beam from the cathode through an aperture in an accelerating electrode, and impinging the electron beam on an anode surface to form a focal spot on the anode surface.
Abstract:
This invention is directed to a radiation source comprising a power supply, a flexible fiber optic cable assembly, a light source, and a target assembly. The power supply includes a first terminal and a second terminal, and elements for establishing an output voltage between the first terminal and the second terminal. The flexible fiber optical cable assembly has an originating end and a terminating end, and includes a fiber optical element extending from the originating end to the terminating end. The cable is adapted for transmitting light incident on the originating end to the terminating end. The light source includes elements for generating a beam of light at and directed to the originating end of the fiber optical cable assembly. The target assembly is affixed to the terminating end of the fiber optical cable assembly and is electrically coupled to the power supply by way of the first terminal and the second terminal. The target assembly includes elements for emitting radiation in a predetermined spectral range, in response to light transmitted to the terminating end.
Abstract:
An apparatus and method for reducing the incidence of electric field stress on portions of insulating structures within high voltage devices is disclosed. Each of the embodiments disclosed herein modifies the conductive properties of the insulating structure surface in a non-uniform manner such that the distribution of voltage potential along the surface thereof is more fully equalized during operation of the high voltage device. This, in turn, reduces the per unit stress on the insulating structure caused by the electric field of the high voltage device. Though embodiments of the present invention are preferably directed to utilization in x-ray tube devices, a variety of high voltage devices may benefit from application of the disclosed matter.
Abstract:
An X-radiation source can comprise an electron emission layer and an anode layer. In an embodiment the anode layer may be no more than approximately 1000 microns from the emission layer or include an anode region that laterally surrounds a hole extending through the anode layer. In one embodiment, a plurality of electron emission tips, extraction gate electrodes and anode regions may be used. When the anode regions comprise different materials, a plurality of wavelengths may be emitted. In another embodiment, a monolithic structure can be formed using processing operations similar to those used in conventional semiconductor device manufacturing. The X-radiation source can be relatively small and may have uses in applications with confined spaces, such as medical applications.
Abstract:
An X-ray generator includes a cathode having an emitter made of carbon nanotubes which emits electrons by field emission and thus becomes a cold cathode electron emission source. In the invention using the carbon nanotubes, any one of the following three forms is adopted to control the tube current apart from the electron-focusing control. The first form is that a takeoff electrode is disposed near the cathode and the Wehnelt potential and the takeoff electrode potential are controlled independently. The second form is that an electron emission source is disposed behind the cathode and the electron emission source emits electrons which collide against the back of the cathode so that the cathode temperature is controlled in a range of the room temperature to about 100 degrees Celsius to regulate an amount of electron emission from the cathode. The third form is that the cathode has a heater so that the cathode temperature is controlled in a range of the room temperature to about 100 degrees Celsius to regulate an amount of electron emission from the cathode.