Abstract:
The present invention provides arrangements for electroluminescent displays 10 comprising a packaged semiconductor light emitting element 12 that has a light emitting display side 16. A heat sink 22 is disposed in the region of a rear side of the light-emitting element 12 opposite to the display side. Electrical connections 28 from the light emitting element 12 pass through said heat sink 22. Drive circuitry 30 for the light emitting element 12 is connected thereto by the electrical connections 28 and spaced apart from the heat sink 22 in such a manner that at least one cooling channel 34 is defined between the heat sink 22 and the drive circuitry 30 for the passage in use of a cooling fluid.
Abstract:
A plasma display device including a plasma display panel, a chassis base disposed in parallel with the plasma display panel, and a heat conductive media disposed between the plasma display panel and the chassis base. The heat conductive media is disposed such that a heat conductive rate is varied according to a location of the plasma display panel or the chassis base.
Abstract:
An improved high pressure halogen filament lamp is disclosed. The lamp has a filament tube attached to a base, and an outer envelope encompassing the filament tube. Reductions to the gas fill pressures of the outer envelope and filament tube increase the probability that the coated outer envelope will contain the fragments of the filament tube in cases involving explosive failure of the filament tube.
Abstract:
The represent invention relates to a method of backlighting a liquid crystal display which includes heating a fluorescent lamp with an external heating element which does not contact the lamp. The heating step may be accomplished by passing a current through a resistive material. The resistive material may be coated on to a surface. The present invention also relates to a backlighting system with a fluorescent lamp and an external heating element which does not contact the fluorescent lamp. The heating element may be a resistive material coated on a substrate. The present invention also relates to a portable display device element includes a liquid crystal display, a fluorescent lamp to act as a backlight, a heating element which does not contact the fluorescent lamp and optionally including reflectors, diffusers, and optical enhancement films. The heating element may be a resistive material coated on a substrate.
Abstract:
The present invention provides a bulb attachment for a temperature limited environment. According to the invention, a sleeve is attached to a bulb in a bulb/reflector assembly. As the lamp operates, heat is diverted from the hottest portions of the bulb and into the sleeve, which results in a lower surface temperature of the bulb and allows compliance with UL standards. In some cases, the use of the sleeve allows for the use of higher power bulbs (and the associated increases in light output and brightness) without violating UL standards.
Abstract:
A discharge lamp is disclosed comprising an enclosed discharge vessel for the generation of an electrical discharge and a casing made of glass which surrounds the discharge vessel. In order to achieve as constant properties as possible over the service life of the lamp, it is proposed that the glass material of the casing be doped with sodium in a concentration of at least 10 ppm, and preferably at least 30 ppm. According to a further embodiment, it is proposed that other alkali metals (except for sodium) be contained in a maximum concentration of 25 ppm. Surprisingly, by the appropriate choice of the outer bulb, not in direct contact with the actual discharge, the diffusion of sodium from the discharge vessel is reduced. In addition to this, the material of the outer bulb has a reduced inclination to crystallization.
Abstract:
A high-pressure discharge lamp has a support structure for supporting a light emission tube so as to restrict its displacement in a direction perpendicular to the axis line thereof. A pair of thermal-stress generation members generates thermal stresses due to a temperature change at a time of switching the high-pressure discharge lamp from an on status to an off status. The thermal stresses acts as forces directed downward in a vertical direction and outward with respect to the light emission tube on side tube portions of the light emission tube arranged in a posture where the axis line extends in a horizontal direction.
Abstract:
A quick temperature-raising structure of cold cathode fluorescent lamp comprises a cold cathode fluorescent lamp, a soft electric heating component, an insulating tube and two insulating components. The soft electric heating component adheres onto the surface of the cold cathode fluorescent lamp. The insulating tube is slipped onto the surface of the cold cathode fluorescent lamp. The two insulating components are slipped onto the joint portions at two sides of the cold cathode fluorescent lamp, the soft electric heating component and the insulating tube. Grooves are formed on the insulating components so that an external power source can provide the working power for the soft electric heating component and the cold cathode fluorescent lamp via conducting wires. The soft electric heating component can heat in advance to quickly raise the ambient temperature of the cold cathode fluorescent lamp when the cold cathode fluorescent lamp is driven.
Abstract:
The plasma display device including a plasma display panel, a chassis base disposed substantially parallel to the plasma display panel, and a thermally conductive medium which is disposed between the plasma display panel and the chassis base, and closely adhered to both the plasma display panel and the chassis base. The thermally conductive medium is formed out of gel-like adhesive materials.