Abstract:
An electrodeless fluorescent lamp operating at relatively low frequencies (50-500 kHz) whereby a ferrite core is utilized to generate the necessary magnetic and electric fields to maintain the discharge where the core material is MnnullZn type combination due to its low power losses, 400 mW/cm3, in the frequency range of 50-100 kHz and magnetic field strengths of 150 mT. Furthermore, the material may cover a variety of atomic percentages of Mn and Zn added to Fe2O3 base to obtain favorable grain boundary and crystalline structure, resulting in a practical ferrite core material, having a Curie temperature greater than 200null C. Such material enables the operation of electrodeless fluorescent lamps with powers ranging from 10 W to about 250 W at low frequencies, as mentioned above, in such a manner that ferrite core losses constitute less than 20% of the lamp power and heat generated by core losses is minimized.
Abstract:
An external electrode fluorescent lamp and a method for manufacturing the same is disclosed, in which indentations are provided in a surface of a glass tube filled with a discharge gas by etching, and external electrodes are formed at both ends of the glass tube, thereby realizing close adhesion between external electrode and the glass tube.
Abstract:
The present invention is directed to a dielectric barrier discharge lamp capable of recovering reduced radiation efficiency by easily, quickly cleaning dust or discoloring of a discharge tube or replacing any defective discharge tube. For this end, an internal electrode 22 in a form of electrically conductive rod is inserted into a center hole of a dual discharge tube 20 having discharge gas filled in an internal space 21. Holders 40a and 40b are removably mounted on both ends of the internal electrode 22 using mounting screws 41. A protection tube 30 is mounted onto the holders 40 by way of sealing members 31, pressure blocks 32 and pressure rings 33 in such a manner to cover an external electrode 23 of the discharge tube 20. Cooling water or the like may be permitted to flow in a continuous space 45 formed between the internal electrode 22 and the discharge tube 20 and the holders 40.
Abstract:
In a lamp and method for fabricating the same, an outer surface of the lamp tube is dipped into a conductive transparent solution for forming an electrode by a predetermined depth, and then the lamp tube is pulled out from the solution. Accordingly, an electrode having different profiles is formed on the outer surface of the tube body. Also, the outer surface of the lamp tube is dipped into the solution by an acute angle, and is pulled out from the solution. Therefore, a problem of a nonuniform brightness between lamps is not generated, and light utilization efficiency is much enhanced even when using a plurality of lamp in parallel connected to a power supply.
Abstract:
An electrodeless fluorescent lamp according to the present invention includes: a luminous bulb in which mercury in a liquid state is enclosed as a light emitting substance and which includes a cavity portion; an induction coil which is inserted into the cavity portion and generates an electromagnetic field for generating electric discharge in the luminous bulb; a ballast circuit electrically connected to the induction coil; and a luminophor layer which is provided on the inner surface of the luminous bulb and converts light radiated from the mercury to visible light. In the electrodeless fluorescent lamp, a manganese-activated deep red luminescent substance (3.5MgOnull0.5 MgF2.GeO2:Mn4null) is contained only in part of the luminophor layer provided on a surface of the cavity portion facing the inner surface of the luminous bulb.
Abstract:
A dielectric barrier discharge type low pressure discharge lamp 11 includes dielectric barrier discharge type external electrodes 21, 22 on external ends of a tubular glass lamp vessel 10, electrically conductive material layers 31, 32 on the external surface of the tubular glass lamp vessel, and heat equalizing members 41, 42, which are provided on the electrically conductive material layer. With the constitution, the surface temperature of the external electrodes 21, 22 can be equalized with a local temperature rise avoided, thereby a longer life of the lamp can be assured.
Abstract:
An apparatus for producing the sequence of terahertz electromagnetic pulses by driven particle beam is disclosed. Initial electromagnetic beam (em-beam) is being sent to metal-dielectric structure the way that the field of said em-beam partially transforms into delayed electromagnetic wave, in preferred embodiment into the surface evanescent mode, and the beam of charged particles (cp-beam), in preferred embodiment electrons, is also being sent to said structure the way that the particles' kinetic energy partially transforms into energy of the delayed electromagnetic wave having the same phase-frequency's characteristics as transformed field of em-beam; at that, transformation of em-beam and excitation of wave by particles' cp-beam commonly take place at the same small space region, which is localized by said metal-dielectric structure. Delayed electromagnetic wave, which is generated by particle beam, is summarized with the field of em-beam, which is transformed on said structure, so, the particle beam influents on intensity of em-beam has observed after passing the region of localized transformation. The controlled changing of parameters of particle beam in interaction region leads to adequate changing of intensity of the em-beam passed through said region and this way the predetermined forming of electromagnetic pulses is realized. Alternatively, sequence of electromagnetic pulses is produced without initial electromagnetic beam directed to metal-dielectric structure, but due to presence of driven particle beam only.
Abstract:
A non-oxidizing electrode arrangement for an excimer lamp that is formed by coating an electrode of the lamp with a layer of protective layer that prevents the electrode from oxidizing. The protective layer is preferably transparent and possesses a low permeability for oxygen (e.g., silicon oxide, magnesium fluoride, calcium fluoride). The interior of the excimer lamp is evacuated to a pressure level that is lower than the pressure level surrounding the excimer lamp at any time during the non-oxidizing electrode formation process in order to assist in preventing the excimer lamp from fracturing.
Abstract:
A light source device includes at least one discharge tube, a discharge medium sealed inside the discharge tube, and first and second electrodes for exciting the discharge medium. The first electrode is arranged inside or outside the discharge tube, and the second electrode has a plurality of contact portions at which the second electrode is in contact with an outer surface of the discharge tube. The contact portions are located at different distances from the first electrode and are provided discontinuously. Xenon gas and at least one selected from argon gas and krypton gas are sealed in the discharge tube, in which the xenon gas accounts for 60 vol % to 80 vol %. Thus, it is possible to provide a light source device and a liquid crystal display device that provide light emission with high brightness and excellent brightness distribution and that can be manufactured readily.
Abstract:
The invention relates to improvements in high-pressure discharge lamps of the ceramic metal halide type of the Philips MasterColor series having a metal coil wrapped around the discharge vessel and/or at least a portion of the electrode feed through means, and having power ranges of about 150W to about 1000W, wherein the lamp has a metal coil wound around the discharge vessel and/or at least a portion of the electrode feed through means in a first position and in which metal coil the coil position of at least one coil portion, preferably multiple coil portions, and most preferably substantially all of the coil portions of the metal coil are stabilized to be substantially non-relaxed from the first position after exposure to elevated temperature conditions present during operation of the lamp. The metal coil functions as both an ignition aid and for containment in said lamp.