Abstract:
A short-arc ultra-high pressure mercury lamp in which the change in the shape of the electrodes can be suppressed and a stable arc discharge can always be produced is achieved in an arrangement in which, in the silica glass arc tube, there is a pair of opposed electrodes with a distance between them of at most 2 mm and the tube is filled with at least 0.15 mg/mm3 of mercury, a rare gas, and a halogen in the range from 1null10null6 nullmole/mm3 to 1null10null2 nullmole/mm3, by at least one of the electrodes having a melt part formed toward the electrode tip by winding the electrode rod with a coil and by melting the part of the coil oriented towards the electrode tip at least in the area of its surface. A part of the coil located away from the electrode tip is unmelted and the base point side area of the coil facing away from the electrode tip is rounded and does not have sharp edges.
Abstract:
The present invention provides a DBD lamp used in fluid treatment systems, where the irradiated fluid is used as a low voltage outer electrode instead of a metallic wire mesh. This fluid is in direct contact with the lamp envelope which acts as a two-fold advantage. First, the fluid acts as a strong built-in cooling source. This allows the lamp to be driven at high voltage without forced cooling. Second, the replacement of the wire mesh as the outer electrode by fluid as well as the sleeve eliminates the absorption of radiation from the outer surface of the said DBD-driven light source which more than doubles the efficiency of the DBD-driven light source. The inner high voltage electrode remains in the center of the coaxial tube assembly and provides high voltage across the gas to generate excimer formation.
Abstract:
The invention relates to the capacitive modulation of the field distribution in a silent discharge lamp 1, by means of a structured, electrically conductive device 2 for definition of preferred locations for discharge structures in the lamp 1.
Abstract:
A bulb comprises an airtight envelope having a filling gas therein. A conductive wire extends outwardly from the airtight envelope. A conductive pipe pin has the conductive wire passed therethrough, a predetermined welding portion, and a welded portion including a smooth surface. An outer diameter of the welded portion is no greater than the outer diameter of the pin. The welded portion may be formed in the pipe pin by the fluid of the melted conductive wire and predetermined welding portion flowing into the pipe pin and hardening.
Abstract:
A low-pressure gas discharge lamp comprising a discharge vessel and at least two, spatially separated, capacitive induction structures, the vessel having a relatively small diameter of preferably 5 mm or less and comprising cylindrically shaped tubular induction structures of a dielectric material. An external induction plate of the capacitive induction structure acts as an electric contact and is shaped as a bush and is made from electrically conducting, ductile metallic material. The bush is provided on and is in direct contact with the dielectric material of the cylindrically shaped tubular induction structure. It is ensured that the connection thus formed is gastight and has a permanent compression stress, for example, a shrink connection.
Abstract:
A method for producing a discharge lamp of the present invention includes the steps of: preparing a glass pipe for a discharge lamp having a luminous bulb portion and a side tube portion, and a single electrode assembly including an electrode structure portion that will be formed into a pair of electrodes of the discharge lamp; inserting the single electrode assembly into the glass pipe for a discharge lamp such that the electrode structure portion of the single electrode assembly is positioned in the luminous bulb portion of the glass pipe for a discharge lamp; forming a luminous bulb in which the electrode structure portion is arranged inside by attaching the side tube portion of the glass pipe for a discharge lamp to a part of the single electrode assembly; and forming a pair of electrodes in the luminous bulb by melting and cutting a part of the electrode structure portion selectively.
Abstract:
The invention relates to a mercury short-arched-high pressure discharge lamp (1) which operates with direct-current, comprising a discharge vessel (2) having two necks (4) arranged in a diametrical manner opposite each other, wherein an anode (26) and a cathode (7), made respectively from tungsten, are melted in a gas-tight manner and said vessel is filled with mercury and at least one inert gas. According to the invention, the material of the cathode tip (11) contains, in addition to the tungsten, lanthanum oxide La2O3 and the mercury content of the filling in the discharging vessel volume is at least 1 mg/cm3 and at the most 6 mg/cm3.
Abstract translation:本发明涉及一种直流工作的水银短弧高压放电灯(1),其包括具有彼此相对配置的两个颈部(4)的放电容器(2),其中阳极( 26)和分别由钨制成的阴极(7)以气密方式熔化,并且所述容器填充有汞和至少一种惰性气体。 根据本发明,除了钨之外,阴极尖端(11)的材料还含有氧化镧La 2 O 3,并且放电容器体积中的填充物的汞含量为至少1mg / cm 3,并且在 最多6mg / cm 3。
Abstract:
A discharge lamp of the short arc type having an arc tube, a hermetically sealed tube at each of opposite ends of the, a pair of electrodes which are located in the arc tube, electrode rods which support the electrodes, support parts which are each formed by part of one of the hermetically sealed tubes, optionally cylindrical retaining bodies which are each located within and welded to a respective one of the support parts and in which a respective one of the electrode rods time is held securely, and a trigger component which is located on an outer side surface of the support parts, the support parts of the respective hermetically sealed tube and/or the cylindrical retaining bodies are formed of a material that contains a metal or a metallic compound for increasing the dielectric constant. In this way, even with a great distance between the electrodes of the lamp and a high gas filling pressure, the operating properties of the lamp can be improved and it can be reliably operated at a low breakdown voltage.
Abstract:
A light source device includes at least one discharge tube, a discharge medium sealed inside the discharge tube, and first and second electrodes for exciting the discharge medium. The first electrode is arranged inside or outside the discharge tube, and the second electrode has a plurality of contact portions at which the second electrode is in contact with an outer surface of the discharge tube. The contact portions are located at different distances from the first electrode and are provided discontinuously. Xenon gas and at least one selected from argon gas and krypton gas are sealed in the discharge tube, in which the xenon gas accounts for 60 vol % to 80 vol %. Thus, it is possible to provide a light source device and a liquid crystal display device that provide light emission with high brightness and excellent brightness distribution and that can be manufactured readily.
Abstract:
A gas discharge tube includes a plurality of light-emitting portions that are provided outside of the tube and comprise at least two discharge electrodes, and an electron emission film formed on the entire inner wall of the tube for improving discharge characteristics.