摘要:
A novel 2/3 full-speed divider operating at high speed with low power consumption comprising a ECL D flip-flop in master-slave configuration and a phases-selection block is provided in the present invention. The master latch and slave latch comprise a pair of input terminals, a pair of control terminals, and a pair of output terminals. The master latch further comprises two pairs of complementary cross-couple transistors for amplifying the output of the master latch for entering the phase-selection block. The phase-selection block has a pair of input terminals, a clock signal input terminal, and an output terminal generating an output signal adjusted by a division ratio according to the clock signal. The division ratio is either 1/2 or 1/3 and the divider functions as a 2/3 divider.
摘要:
Multiplexers are used to generate synchronized slave clocks from a common master clock. A first multiplexer and a second multiplexer generate a first slave clock and a second slave clock, respectively, from the common master clock. A third multiplexer and a fourth multiplexer are configured as a divide-by-n circuit for providing a third slave clock that is a divided version of the second slave clock. A fifth multiplexer provides a matching delay to preserve the synchronization between the first slave clock and the other slave clocks. A sixth multiplexer is used to select between the second slave clock and the third slave clock in response to a select signal. A flip-flop may be used to provide the select signal and to guard against false selection of slave clocks.
摘要:
A frequency dividing circuit divides a master clock frequency by a non-integer factor to provide an output clock signal whose frequency is equal to the frequency of the master clock signal divided by that non-integer factor. In one embodiment, the circuit is operative to divide the master clock frequency by 2.5.
摘要:
A low-voltage divide-by-64/65 prescaler fabricated with a 0.35 &mgr;m standard CMOS technology is presented to lower power dissipation. A new dynamic D-flip-flop (DFF) using the dynamic back-gate forward bias method has been developed for low-voltage operation. The prescaler including a preamplifier measured at 1 V supply voltage has a maximum operating frequency of 170 MHz and its power dissipation is only 0.9 mW.
摘要:
A single-phase clock CLK0 is divided into a clock signal CLK1 to drive nMOS transistor and a clock signal CLK2 to drive pMOS transistor, and the resulting clock signals are inputted to DFF circuits 1 to 3 constituting a frequency dividing circuit, making gms of nMOS and pMOS transistors larger than that could be achieved using the conventional technique. Therefore, frequency dividing performance can be greatly improved in comparison with that achieved using conventional technology.
摘要:
The novel frequency divider has an adjustable divider ratio. Such circuits are subject to demands for ever higher clock frequencies. The circuit generates the output signal in a blockwise manner and converts it into a sequential signal in a parallel-serial converter on the output side and outputs it in a bitwise manner. As a result, the essential part of the frequency divider circuit can be operated with a slower frequency than the input frequency, which in turn enables higher input frequencies.
摘要:
A phase detector circuit (100) operating at a high frequency includes a steering circuit (112) operating on frequency-divided versions of the phase detector signals. The phase detector (100) implements steering by adding dividers (108, 110) at both input ports to the steering circuit (112). This achieves the desired effect of reducing the operating frequency of the input signals to the steering circuit (112) to make operation possible at high frequencies of operation. The phase detector (100) also allows the steer circuit (112) to be turned off in steady state operation, this is accomplished by coupling only the steer outputs of the steering circuit (12) to the tuning line. The phase/frequency detect outputs are not coupled to the tuning line.