摘要:
An electronic camera includes an image-capturing element that captures a subject image and outputs image-capturing signals each corresponding to a pixel; and a control device that executes gradation correction on the image-capturing signals output by the image-capturing element. In the electronic camera, the image-capturing element is split into a plurality of pixel areas each containing a plurality of pixels; and the control device calculates average values of image-capturing signal values in the pixel areas, which are output by the image-capturing element prior to a shutter release, determines an exposure quantity and gradation characteristics based upon the average values having been calculated each in correspondence to one of the plurality of pixel areas, engages the image-capturing element to capture an image at the exposure quantity having been determined in response to the shutter release and executes gradation correction on image-capturing signals output by the image-capturing element in conformance to the gradation characteristics having been determined.
摘要:
An imaging apparatus is provided with an imaging element for outputting both a color signal of high-power image data and a color signal of low-power image data; gamma correcting means for gamma-correcting the high-power image data and for gamma-correcting the low-power image data; image synthesizing means for adding the high-power image data which has been gamma-corrected by the gamma correcting means to the low-power image data which has been gamma-corrected by the gamma correcting means, and also for multiplying the added image data by a total gain value in response to a scene so as to perform an image synthesizing operation; converting means for converting the synthesized image data synthesized by the image synthesizing means into both a luminance signal and a color difference signal; and saturation correcting means for performing a saturation correcting process operation with respect to the color difference signal in response to the luminance signal obtained by the converting means and a dynamic range of the synthesized image data.
摘要:
Digital correction module for video projector where a correction module is provided to give a non-linear re-imaging of an image so that it is displayed correct on a non-ideal screen (curved screen) where a correction module is provided in each of a plurality of video projectors after a common image source in order to create a large, of several composite sub image, projected image of said image source. The correction module comprises a sequencer (1), a pixel write control (2), a parameter storage (7), a read address generator (13), a coefficient generator (5), a scaling generator (6), an adder (8), a pixel storage (3), a vertical mixer (9), a horizontal mixer (10) and a look up function means (12) for correction of differences in the border area of the image of the respective projectors such as geometry correction, soft transition tuning, vignette correction and gamma correction.
摘要:
A system and a method solve the estimation problem of finding reflectance R and illumination L. The system and method to solve a functional of the unknown illumination L such that a minimum of the functional is assumed to yield a good estimate of the illumination L. Having a good estimate of the illumination L implies a good estimate of the reflectance R. The functional uses a variational framework to express requirements for the optimal solution. The requirements include: 1) that the illumination L is spatially smooth; 2) that the reflectance values are in the interval null0,1null nullthus, when decomposing the image S, the solution should satisfy the constraint L>S; 3) that among all possible solutions, the estimate of the illumination L should be as close as possible to the image S, so that the contrast of the obtained R is maximal; and 4) that the reflectance R complies with typical natural image behavior (e.g., the reflectance is piece-wise smooth).
摘要:
An appropriate correction quantity is obtained for a video luminance signal on an individual video basis with a characteristic value, like the maximum or average value, of the luminance signal taken into account, thereby performing gray scale correction more effectively. A dynamic gamma correction apparatus for performing a correction on a video luminance signal includes: a correction start point control section for obtaining a correction start point, which is a lower limit of a given correction range, in accordance with a characteristic value of the luminance signal; a gamma correction quantity calculating section for obtaining a provisional correction quantity for the luminance signal to be corrected using the correction start point and the luminance signal; a gamma correction gain control section for obtaining a gain for the provisional correction quantity in accordance with the characteristic value of the luminance signal; a multiplier for obtaining a product of the provisional correction quantity and the gain as a gamma correction quantity; and an adder for obtaining a sum of the luminance signal and the gamma correction quantity and outputting the sum. The correction start point and the gain for the provisional correction quantity are controllable in accordance with the characteristic value of the luminance signal. Thus, an appropriate gamma correction quantity can be obtained as a final correction quantity.
摘要:
The present invention relates to an image processing circuit for performing contrast highlighting and smoothing of an image-related apparatus such as a color camera or a monitor. The image processing circuit according to the present invention comprises first means for calculating an average luminance in a portion surrounding a target pixel, and second means for controlling input-output characteristics on the basis of the average luminance calculated by the first means, to control the luminance of the target pixel.
摘要:
A gamma correction circuit for correcting a digital video signal, the circuit comprising first (6) and second (8) lookup tables for storing discrete output intensity data and the associated slope data of a non-linear transfer function, respectively, for each of the discrete input video signal intensities, an adder (10) having a first input connected to the output of the first lookup table, a multiplier (12) having a first input connected to the output of the second look-up table (8), characterized by a quantizer (4) for providing the most significant bits of the incoming video signal to address the first (6) and second (8) lookup tables and to transfer the corresponding output intensity data to the adder (10) and the associated slope data to the multiplier (12), the quantizer (4) transmitting the remaining least significant bits of the input video signal to the second input of the multiplier (12), the multiplier (12) multiplying the slope data with the remaining least significant bits and feeding the multiplication result to the second input of the adder (10), the adder (10) adding the output intensity data and the multiplication result to generate a corrected video signal.
摘要:
A method and system are disclosed that correct pixel values for output on a video display utilizing gamma correction. The method provides improved gamma correction by determining a first range of pixel values to be displayed on the video display and then determining a second range of pixel values to be displayed on the same display. Next, the method determines a first level of gamma correction to be provided for the first range of pixel values. This first level of gamma correction is provided at a first level of precision. Next, the method provides a second level of gamma correction to the second range of pixel values at a second level of precision. The second level of precision is different than that of the first level and is typically less than the first level.
摘要:
A method of characterizing a video display, including the steps of providing a mathematical model of the display that relates code values to luminance output of the display, the model having a parameter that characterizes the display; displaying a reference patch and a test patch simultaneously on the display, the reference patch having a reference brightness produced by one or more luminances and the test patch having an test brightness produced by rapidly switching back and forth between two luminances; observing the display while varying one of the luminances keeping the others fixed, until the apparent brightness of the reference patch matches the apparent brightness of the test patch, and recording the code values employed to produce the luminances when a best match is made, and using the mathematical model, and the recorded code values to determine the value of the parameter that characterizes the display.
摘要:
The present invention discloses an imaging apparatus constructed as follows. The imaging apparatus picks-up a subject image formed by a imaging optical unit, and comprises an image pickup device for photoelectrically converting a subject image, a memory for storing gamma property data of the image pickup device and light quantity distribution data of incident light in accordance with pixel positions on the image pickup device; and a correcting circuit for correcting image signals outputted from each pixel of the image pickup device based on the gamma property data and light quantity distribution data that are stored in the memory. Thereby, a drop in peripheral light quantity can be electrically corrected while reflecting the gamma property of the image pickup device without an increase in noise, whereby a high-quality image accurately reproducing the actual brightness distribution in a shooting range can be obtained.