Abstract:
Embodiments are provided for facilitating text- and voice-based communications that originate from an electronic device connected to a non-terrestrial network. According to certain aspects, the electronic device can be previously registered with a data center and can have an active service or product with the data center. The electronic device initiates a communication request that is intended for a destination device. The data center examines the communication request to identify the electronic device, and modifies the communication request to indicate a subscription associated with the electronic device. The data center transmits the modified communication request to a service provider network for delivery to the destination device.
Abstract:
Systems, graphical user interfaces, and methods are provided to optimize bandwidth usage associated with a local network. As part of the bandwidth optimization techniques, a network regulation entity may maintain a plurality of usage statistics for a plurality of electronic devices. These usage statistics may be presented by an electronic device as part of a usage summary interface. In addition to displaying the usage statistics, the usage summary interface may enable a user to modify how the network regulation entity regulates traffic. Accordingly, the network regulation entity may update an access profile in accordance with the modification. Subsequently, the traffic received from the electronic device is processed based on the user- indicated modification. Thus, compliance with network neutrality principles may be maintained.
Abstract:
Embodiments are provided for facilitating text- and voice-based communications that are destined for an electronic device connected to a non-terrestrial network. According to certain aspects, the electronic device can be previously registered with a data center and can have an active service or product with the data center. A data center receives a communication request that is intended for the electronic device. The data center examines the communication request to identify the electronic device, and modifies the communication request to indicate an identification of the electronic device. The data center transmits the modified communication request to an on-board communications network system for delivery to the destination device.
Abstract:
Techniques for facilitating data communications among electronic devices via various communication networks are provided. A first electronic device may be connected to a terrestrial network and a second electronic device may be connected to an on-board communications network of a vehicle. A first voice- or message-based content may be received from the first electronic device, for delivery to the second electronic device. A data center may transmit a corresponding forward communication to the second electronic device via a satellite communication link. The data center may also receive a return communication from the second electronic device via either the satellite communication link or a terrestrial communication link, and transmit corresponding content to the first electronic device.
Abstract:
Embodiments are provided for communicating with electronic devices traveling on an aircraft. According to certain aspects, a data center can examine registration data to identify a set of electronic devices that are traveling on a particular flight, and can retrieve relevant travel information associated with the set of electronic devices. In particular, the travel information may be general to the flight or may be related to a specific itinerary for one of the passengers. The data center may generate one or more text messages that are intended for one of more of the set of electronic devices. The data center may also transmit the text message(s) to an on-board network for delivery to the electronic device(s).
Abstract:
Data content that is to be utilized, as a whole, at a target device on-board a vehicle is apportioned for delivery onto the vehicle via multiple forward links, each of which is included in a different frequency band and/or used a different protocol. A mapping or selection of a specific portion of the data content for a specific forward link may based on a data content type of the specific portion, as well as on other dynamic or static criteria. The target device may operate on the subsets of the data content as it receives each subset. Thus, time critical/foundational portions of the data content may be delivered using a faster forward link, larger elements of the data content may be delivered using a higher-bandwidth forward link, and/or portions of the data content requiring a higher degree of accuracy may be delivered using a more robust forward link, for example.
Abstract:
Techniques for providing hybrid communications to devices on vehicles include using a selected modulation scheme on a forward link to deliver data (that is intended to be received by an on-board device) onto a vehicle, and using a reverse link in a different frequency band to send reverse data from the vehicle. Based on the reverse data, a subsequent pre-defined modulation scheme for a subsequent forward transmission is selected from a plurality of modulation schemes corresponding to a plurality of performance levels of data delivery. The selections may be based on a current geo-spatial location of the vehicle, a type of data, and/or on one or more other dynamic conditions. The forward data may be multiplexed and/or multicast. Thus, adaptive modulation is achieved in a hybrid communications system in which the forward link and the reverse link to the vehicle are supported by different wireless communication bands.
Abstract:
Techniques for optimizing modem use for data delivery to vehicles that are near to or parked at ports include using a high-capacity forward communications link, in a first frequency band, to support a logical forward link of a data tunnel via which data is delivered between a data provider and the vehicle. Instead of using the reverse communications link of the first frequency band, though, a reverse communications link in a different frequency band is used to support the reverse logical link of the data tunnel, as reverse data typically requires less bandwidth. Thus, the forward communications link is used in a high-throughput, unidirectional manner. Forward data may be multiplexed and/or multicast, and in some cases, multiple forward communications links may be used in parallel to support the logical forward link of the data tunnel.
Abstract:
Techniques for providing hybrid communications to devices on vehicles include using a forward link to deliver data, that is intended to be received by an on-board device, onto a vehicle, and using a reverse link in a different frequency band to send reverse data from the vehicle. A subsequent forward link is selected, based on the reverse data, from a plurality of forward links, each of which is supported by a different frequency band. Forward data may be multiplexed and/or multicast, and in some cases, multiple forward links may be used for distributed forward data delivery. These techniques allow for efficient data delivery to the vehicle, and in particular while the vehicle is in transit and link conditions are dynamic.