Abstract:
The precise touchscreen control allows a user to rapidly choose a point on a touchscreen, confirm that they've touched the point they intended, then perform a pan gesture to a new location, all without their fingertip obscuring any fine details on the screen.
Abstract:
This solution addresses problems using force touch features on mobile, tablet, or other touch-screen devices by zooming based on the force applied to an area for selection. Zoom may be proportional to force amount, and may be restricted to one direction zoom (zoom-in only). The entire display may be zoomed to maximize effective selection. A selection is made by positioning the finger (or a related selection tool) on the desired target. The selection is retained the instant the user releases the force (lifts finger), at which time the zoom is reverted to the original (non-zoom) level. The one-direction only zoom and instant return avoids re-introducing selection confusion (such as auto-snapping to an undesired target) that may occur with a gradual zoom out.
Abstract:
Disclosed is a parametric feature-based 3D CAD system that allows multiple users to simultaneously edit a parametric feature-based 3D CAD model consisting of 3D parts and assemblies of those parts (3D Model). Several CAD users, each using their own computer, phone, or tablet, can edit the same 3D Model at the same time. Editing may be separate and simultaneous – there is no need for users to worry about locking, checking out, or otherwise restricting each other's access to 3D Models. As a result, users see each other's changes occur in real-time, and may also identify what aspects other users are actively modifying through visible Collaboration Cues.