Abstract:
A stored procedure call may be transmitted to a database to execute a database query. As a result of the stored procedure call, results including a result record satisfying the database query and a set of records related to the result record may be received. The results may be stored in a local cache.
Abstract:
Techniques are provided for using an intermediate cache between the shared cache of an application and the non-volatile storage of a storage system. The application may be any type of application that uses a storage system to persistently store data. The intermediate cache may be local to the machine upon which the application is executing, or may be implemented within the storage system. In one embodiment where the application is a database server, the database system includes both a DB server-side intermediate cache, and a storage-side intermediate cache. The caching policies used to populate the intermediate cache are intelligent, taking into account factors that may include which object an item belongs to, the item type of the item, a characteristic of the item, or the type of operation in which the item is involved.
Abstract:
Methods and systems are presented for custom caching. Application threads define caches. The caches may be accessed through multiple index keys, which are mapped to multiple application thread-defined keys. Methods provide for the each index key and each application thread-defined key to be symmetrical. The index keys are used for loading data from one or more data sources into the cache stores on behalf of the application threads. Application threads access the data from the cache store by providing references to the caches and the application-supplied keys. Some data associated with some caches may be shared from the cache store by multiple application threads. Additionally, some caches are exclusively accessed by specific application threads.
Abstract:
A method of inserting cache blocks into a cache queue includes detecting a first cache miss for the cache queue, identifying a storage block receiving an access in response to the cache miss, calculating a first estimated cache miss cost for a first storage container that includes the storage block, calculating an insertion probability for the first storage container based on a mathematical formula of the first estimated cache miss cost, randomly selecting an insertion probability number from a uniform distribution, and inserting, in response to the insertion probability exceeding the insertion probability number, a new cache block corresponding to the storage block into the cache queue.
Abstract:
A method for removing cache blocks from a cache queue includes detecting a first cache miss for the cache queue, identifying, within the cache queue, a new cache block storing a value of a storage block, calculating an estimated cache miss cost for a storage container having the storage block, calculating a removal probability for the storage container based on a mathematical formula of the estimated cache miss cost, randomly selecting a probability number from a uniform distribution, where the removal probability exceeds the probability number, and evicting, in response to the removal probability exceeding the probability number, the new cache block from the cache queue.
Abstract:
A computer-implemented method, computer program product, computer program and system are provided for implementing a cache offloader. A current cache memory usage is compared with a memory threshold. Responsive to the current cache memory usage exceeding the memory threshold, cache records are selected to be offloaded. Available memory in a plurality of computer systems is identified and the selected cache records are sent to the identified available memory. Transactional systems are dynamically enabled to use memory cache across multiple connected computer systems on demand eliminating conventional evictor and data miss issues that adversely impact performance.