Abstract:
A system for image alignment includes an alignment mechanism (132) configured to permit user alignment of images. A first imaging modality (110) is configured to concurrently provide images in two imaging planes using an imaging mechanism (134) associated with the alignment mechanism (132). An image processing module (126) is configured to display first images collected with the first imaging modality and second images collected with a second imaging modality (130) to permit user alignment using the alignment mechanism between the first images and the second images in multiple planes. A registration module (115) is stored in memory and configured to register the first images with corresponding second images in the multiple planes when alignment in the multiple planes has been achieved.
Abstract:
A method of planning an image-guided interventional procedure to be performed on a patient, where expected motion of the patient, such as that of a breathing cycle, is determined on a sequence of preoperative images, and the procedure trajectory is planned accordingly. The method takes into account the initial positions of the interventional entry, the target region, and any obstructions or forbidden regions between the entry point and the target region, and uses object tracking methods of image processing on the preoperative images to determine how the positions of these three elements change relative to each other during the patient's motion cycle. The method may automatically search in at least some of the preoperative images taken at different temporal points of the motion cycle, for a path connecting the entry point with the target and avoiding the obstacles, which provides minimal lateral pressure on the patient's tissues.
Abstract:
The invention relates to a method for quantitative dynamic evaluation of skeletal muscles functionality comprising the following steps: a) receiving one or more sequences of two-dimensional or three- dimensional echographic images of the muscle under investigation; b) transforming such sequence or sequences of images in sequences of measurements of deformations and/or strain rates in more spatial locations of the muscle or the muscles to evaluate; c) outputting such sequences of spatial measurements in numeric and/or graphical format. A corresponding device is also disclosed.
Abstract:
The present disclosure includes a method for providing real-time guidance to an interventional device coupled to an ultrasound imaging system operating in a first mode and a second mode. The method includes, in the first mode, stopping transmission of ultrasound signals from a transducer of the ultrasound imaging apparatus, and transmitting, via an acoustic sensor mounted on a head portion of an interventional device, an ultrasound signal that is then received by the transducer to generate a first image of a location of the head portion; in a second mode, stopping transmitting ultrasound signals from the acoustic sensor, transmitting ultrasound signals via the transducer, and receiving echoes of the transmitted ultrasound signals to generate a second image of an object structure; and combining the first image with the second image to derive a third image displaying and highlighting a relative location of the head portion in the object structure.
Abstract:
The invention relates to improving medical interventions and in certain instances to the generation of image data, in particular data acquired during a medical intervention or procedure. The invention also concerns the visibility of structures in target regions to be imaged and how this may be enhanced.
Abstract:
An automated three dimensional mapping and display system for a diagnostic ultrasound system is presented. According to the invention, ultrasound probe position registration is automated, the position of each pixel in the ultrasound image in reference to selected anatomical references is calculated, and specified information is stored on command. The system, during real time ultrasound scanning, enables the ultrasound probe position and orientation to be continuously displayed over a body or body part diagram, thereby facilitating scanning and images interpretation of stored information. The system can then record single or multiple ultrasound free hand two-dimensional (also "2D") frames in a video sequence (clip) or cine loop wherein multiple 2D frames of one or more video sequences corresponding to a scanned volume can be reconstructed in three-dimensional (also "3D") volume images corresponding to the scanned region, using known 3D reconstruction algorithms. In later examinations, the exact location and position of the transducer can be recreated along three dimensional or two dimensional axis points enabling known targets to be viewed from an exact, known position.