Abstract:
Apparatus and methods to investigate a multiple nested conductive pipe structure can be implemented in a variety of applications. An electromagnetic pulsed tool disposed in the multiple nested conductive pipe structure in a wellbore can make a set of log measurements and provide a measured log at different depths in the multiple nested conductive pipe structure. A test setup or library can provide a set of small defect log measurements. Processing circuitry can process the set of log measurements to generate thickness estimations of the multiple nested conductive pipes and processing circuitry can process the set of small defect log measurements to generate small defect thickness estimations. Processing circuitry can solve a system of equations involving the thickness estimations and the small defect thickness estimations to generate thickness variations for the multiple nested conducted pipes over the different depths. Additional apparatus, systems, and methods are disclosed.
Abstract:
A system and method according to which a downhole component positioned behind a casing is powered, the casing extending within an oil and gas wellbore that traverses a subterranean formation. Powering the downhole component may include inducing an electrical current to flow in the casing; permitting the electrical current to flow out of the casing to create a first potential difference between a first point and a second point spaced therefrom, the first and second points being located behind the casing; utilizing the first potential difference to store electrical power; and supplying the stored electrical power to the downhole component positioned behind the casing to thereby power the downhole component. The system may include a power source in electrical communication with the casing; a power harvester positioned behind the casing and in electrical communication with the downhole component; and a current return unit in electrical communication with the power source.
Abstract:
A well monitoring system includes a plurality of transmitter coils coupled to an exterior of a casing positioned within a wellbore, wherein one or more first transmitter coils are positioned at a first location and one or more second transmitter coils are positioned at a second location axially offset from the first location. At least one receiver coil is coupled to the exterior of the casing and positioned at the second location. A power source is communicably coupled to the one or more first and second transmitter coils. The one or more first transmitter coils generates a magnetic field detectable by the at least one receiver coil, and the one or more second transmitter coils generates a bucking signal that minimizes a direct coupling between the one or more first transmitter coils and the at least one receiver coil.
Abstract:
The operational position of a moveable device is detected using an electromagnetic induction logging tool. The logging tool generates a baseline log of the moveable devicein a non-actuated position, and a response log of the moveable device in an actuated position. The baseline and response logs are then compared in order to determine the operational position of the moveable device.
Abstract:
The disclosure concerns an electromagnetic logging tool for recording the electromagnetic properties of a subterranean rock formation. One version of the disclosure includes an electromagnetic transmitter that transmits an electromagnetic signal into a downhole formation, an electromagnetic receiver that receives the electromagnetic signal formation; and a cavity antenna in which the interior of the cavity contains a metamaterial made up of a plurality of unit cells that include split ring resonators or other devices such as electric-LC resonators.
Abstract:
Metamaterials are used in well logging measurement tools to provide high directionality galvanic and induction tools having metamaterial focusing. Using metamaterial lenses, currents injected by galvanic tools can be focused in both axial and azimuthal directions. In addition, the focus plane can be shifted away from the tool body into a borehole formation, making measurements more sensitive to zones of interest and less sensitive to boreholes and invaded zones. Another metamaterial lens can bend injected currents toward the head of the tool, adding a look-ahead functionality.
Abstract:
Various embodiments include apparatus and methods implemented to monitor detection of a flood front of a waterflood in a formation. Embodiments can include control of current in a set of three current electrodes to inject current into a formation around a pipe in a wellbore, where the three current electrodes include two of the electrodes to inject current and the third electrode to operatively provide a current return. Response of the formation to the current injections can be communicated by interrogating an optical fiber that extends along a longitudinal axis of the pipe. Determination of progression of the waterflood with respect to the wellbore can be provided from controlling the current and interrogating the optical fiber over time. Additional apparatus, systems, and methods are disclosed.
Abstract:
Apparatus and methods to investigate a multiple nested conductive pipe structure can be implemented in a variety of applications. An electromagnetic pulsed tool disposed in the multiple nested conductive pipe structure in a wellbore can make a set of log measurements and provide a measured log at different depths in the multiple nested conductive pipe structure. The total thickness of the multiple nested conductive pipes can be determined at each depth in the measured log using a remote field eddy current look-up curve. The remote field eddy current look-up curve can be correlated to a remote field eddy current regime in time-domain associated with time decay response. Additional apparatus, systems, and methods are disclosed.
Abstract:
According to at least some embodiments, a method of processing inversion results corresponding to a plurality of parameters of a subterranean formation includes obtaining measurements of the subterranean formation from a multi-component induction (MCI) tool. The method further includes inverting the measurements to determine a first estimated value of a parameter of the plurality of parameters. The method further includes determining at least a second estimated value of the parameter, and assessing a quality of the inverted measurements by comparing the first estimated value with the at least a second estimated value.
Abstract:
Fiber optic sensors are described for detecting the operational position of a downhole moveable device. In one example, an electric or magnetic field is emitted into the wellbore and interacts with the moveable assembly, thereby producing a secondary electric or magnetic field. The secondary field is detected by a fiber optic sensor which produces a corresponding response signal. The response signal is then processed in a variety of ways to determine the operational position of the moveable device. In another example, the operational position is determined using fiber optic temperature or acoustic sensors. A temperature or acoustic vibration reading is acquired before and after actuation of the moveable device. The two readings are then compared to determine the operation position of the moveable device.