Abstract:
An improved laser pattern generation apparatus. The improved pattern generation apparatus of the present invention uses a laser beam (501) to expose a radiant sensitive film on the workpiece (516) to print circuit patterns on a substrate. The laser beam is aligned using a beam steering means. The laser beam (501) is split into 32 beams to create a brush. The brush scans the workpiece (516) through use of a rotating polygonal mirror (510). Each beam of the brush may have one of seventeen intensity values. The beams are modulated by an Acousto-Optical Modulator (506) signals provided to the Acousto-Optical Modulator (506) define the pattern to be generated. The signals are created by a rasterizer (507) increased print speed is accomplished through the use of a wider brush and a print strategy that eliminates physical stage passes.
Abstract:
A scanning system, having a fixed platen and optical imaging system and a translated reference scale, is provided for scanning of a modulated light beam (or a set of parallel, independently modulated light beams) onto an object surface. The optical system provides a combined light beam including the modulated light beam and a reference light beam. An optical imaging device moves the combined light beam along a scan line, and a translatably mounted beam splitter splits the combined light beam to direct at least some of the reference light beam onto a reference scale and a sensor. The reference scale sensor, which is rigidly attached to the beam splitter, and is responsive to reference beam position in two directions, provides a clocking signal indicative of beam position along the scan line and a vernier position signal indicative of beam position in a direction transverse to the scan line. An optical stepper controls the translation of the beam splitter such as to position precisely each of a series of scans in a direction transverse to the scan lines.
Abstract:
In connection with graphical drum scanning a very high accuracy of the drum is required and the scanner unit has to be very accurately adjusted. The invention provides for different purely dynamic adjustment methods, which enable a significant reduction of the accuracy requirements and therewith a reduced price of the scanner units.
Abstract:
A beam position sensor for a beam scanner is disclosed for use in a laser printer. The printer comprises three diode lasers each of which emits at a different wavelength. The beams from the three lasers are combined by the use of dichroic plates to form one combined beam. The combined beam is scanned onto a receiving medium by a polygon. The beam position sensor of the present invention is adapted to sense the position of the polygon in order to provide a synchronizing signal which will insure that each raster line in the printer is started at the proper position. The beam position sensor includes a diode laser and optics for projecting a beam from the laser onto the polygon. The beam is reflected back from the polygon into a photodetector which effects the start of a new raster line at the appropriate time. In order to minimize the number of optical elements in the beam position sensor and to simplify the device, the diode laser and the photodetector are located along the same optical axis.
Abstract:
A thermal printer is disclosed which is particularly suitable for making slide transparencies. The printer includes a laser which provides the necessary thermal energy to effect a transfer of dye from a donor element to a receiver element. A beam from the laser passes through suitable optics and is scanned onto the receiver element by a galvonometer. In order to insure the transfer of dye from the donor at a suitable resolution and with sufficient speed, a relatively high-powered single transverse mode coherent laser is used.
Abstract:
A beam position sensor for a beam scanner is disclosed for use in a laser printer. The printer comprises three diode lasers each of which emits at a different wavelength. The beams from the three lasers are combined by the use of dichroic plates to form one combined beam. The combined beam is scanned onto a receiving medium by a polygon. The beam position sensor of the present invention is adapted to sense the position of the polygon in order to provide a synchronizing signal which will insure that each raster line in the printer is started at the proper position. The beam position sensor includes a diode laser and optics for projecting a beam from the laser onto the polygon. The beam is reflected back from the polygon into a photodetector which effects the start of a new raster line at the appropriate time.
Abstract:
A closed loop direct position feedback control method and recording apparatus for producing on a recording medium a plurality of successive print lines or otherwise component images. An appendant demarcation device provides for the proper abutting and spacing of each independent print character. The apparatus includes a mechanism (18) for transporting the medium along a path orthogonal to the print head (12), which produces single lines or swaths (3) of print in conjunction with the indexed advance of the medium relative to the print head (12). The transport mechanism (18) is operative to advance a first print line or swath through the recording station (12) to form a first print line, to identify and store the position coordinates of each print line or swath (3), and to advance the recording medium for successive line or swath printing (3). The direct position feedback control apparatus also includes a demarcation sensing and printing device (20), (33) for relative positioning, whereby the distance between the location of any sensed or printed demarcation reference and the next successive print line is controlled such that each print line will neglect the positioning error in any previous print line or swath.
Abstract:
Apparatus is disclosed for producing clock signals which are used to precisely control the modulation of a light beam by an acousto-optic modulator as it is line scanned by a moving mirror. The apparatus employs a set of spaced detectors which are located in the scanned beam path and respectively produce start-of-scan (SOS) and end-of-scan (EOS) signals. An oscillator which includes a delay line is responsive to the SOS and EOS signals to produce the clock signals. The delay line coupled to a NOR gate and flip-flop produces a delay line with the precise period tau .
Abstract:
Upper to lower assembly analog position sensors in a dual scanning system measure alignment offsets. A controller uses error signals from the position sensors to calculate actuator error profiles that are used in the next scan in the same direction, with different error profiles being used for forward and reverse scans. Since the alignment error profiles are repeatable for a given set of scanner conditions, the actuator controller anticipates what the error signal will be before each scanning assembly reaches a given position. An optimized error correction can be calculated based on the error profiles and actuator bandwidth without concerns regarding feedback loop speed, overshoot, and unstable control oscillations. An actuation system driven from error profiles can correct for alignment offsets by actively changing belt tensions at the offsetting drive pulleys and/or changing the position of sensor assemblies relative to the drive belt systems.
Abstract:
A pixel clock generator includes a frequency divider 4 that generates a pixel clock PCLK based on a high frequency clock VCLK, a comparator 5 that calculates an error Lerr in the time obtained by integrating a cycle of the pixel clock PCLK for a target number RefN from a time when synchronization signals SPSYNC and EPSYNC are detected, a filter 6, and a frequency calculating unit 7 that sets a frequency dividing value M of the frequency divider 4. The filter 6 and the frequency calculating unit 7 calculate an average of a frequency of the pixel clock PCLK based on the error Lerr, determine a reference error value from the error Lerr in N-cycles, calculate offset values of the frequencies of N pieces of pixel clocks PCLK based on a difference between the reference error value and the error Lerr, and calculate the frequency dividing value M based on a result obtained by adding the circularly selected offset values and the average of the frequency of the pixel clock PCLK.