Abstract:
A differential (10) including a gear case (14) that is operatively supported in driven relationship with respect to a drive train and a spider (48) mounted for rotation with the gear case (14). The spider (48) includes at least one pair of cross pins (50). Each cross pin (50) defines a longitudinal axis (54) and an outer surface (56) that is convex about an axis (58) extending perpendicular to the longitudinal axis (54) of the cross pin (50). Pinion gears (52) include a central bore (60) where the cross pins (50) are received in the central bore (60) of the pinion gears (52) such that the gears are mounted for rotation with the spider (48) and in meshing relationship with side gears (38, 40) with an increased degree of rotational freedom of the pinion gears (52) about the convex surface (56) of the cross pin (50). Alternatively, the central bore (160) of the pinion gears (52) may have an inner surface (162) that is convex along the axis (166) of the central bore.
Abstract:
Die Erfindung betrifft ein Planetengetriebe (1), umfassend ein Sonnenrad (2), einen Planetenträger (3) mit Planetenrädern (4) und ein Hohlrad (5), wobei die Planetenräder (4) auf dem Planetenträger (3) unabhängig voneinander elastisch gelagert sind. Die Erfindung betrifft auch ein Planetenrad für ein PIanetengetriebe, mit einem Zahnkranz und einer Lagerbuchse darin, dessen Zahnkranz (7) über zumindest ein zwischengeschaltetes elastisches Element (10) auf der Lagerbuchse (8) sitzt.
Abstract:
A rotor shaft support and drive arrangement (10) comprises a bearing damper (34) including a number of interconnected oil cylinders (42) circumferentially distributed about a rotor to dampen the vibration thereof. A flexible diaphragm coupling is provided for transmitting a driving torque. The flexible diaphragm coupling provides improved misalignment capability.
Abstract:
Drive train of a wind turbine comprising a coupling shaft for compensating concentricity tolerances and misalignment of a gearbox output axis and a generator turning axis Provided is a drive train of a wind turbine. The drive train comprises a main shaft assembly, a planetary gearbox, and a generator. The planetary gearbox comprises an output shaft. The generator comprises a torque shaft, and the drive train further comprises a coupling shaft having a first articulated joint that is coupled to the output shaft and a second articulated joint that is coupled to the torque shaft. The first and second articulated joints are configured to compensate concentricity tolerances and a misalignment between the out-put shaft and the torque shaft. The coupling shaft is a floating shaft having a translational degree of freedom in axial direction. The drive train comprises a first and a second mechanical stop for limiting a resulting freedom of movement of the coupling shaft in axial direction to a predetermined range of motion. Further provided are a wind turbine, and a wind park.
Abstract:
Getriebeanordnung mit einem Planetenradsatz (1), der Planetenradsatz (1) umfassend ein Sonnenrad (2), Planetenräder (3) und ein Hohlrad (4), wobei die Planetenräder (3) jeweils mittels einer Lagerung (5) drehbar auf jeweils einem Planetenbolzen (7) gelagert sind und der jeweilige Planetenbolzen (7) mit einem Planetenträger (6) verbunden ist, dadurch gekennzeichnet, dass an den Planetenrädern (3) zugewandten Seiten des Planetenträgers (6) in Bezug auf den Planetenbolzen radial umlaufend Kippsegmente (8) vorgesehen sind, und dass der Planetenträger (6) auf seinen den Planetenrädern (3) zugewandten Seiten radial umlaufend in Bezug auf den Planetenbolzen zu den Kippsegmenten (8) korrespondierende Ausnehmungen (9) zur Aufnahme zumindest eines Teils der Kippsegmente (8) aufweist.
Abstract:
An epicyclic gear assembly according to an exemplary aspect of the present disclosure includes, among other things, a carrier including a first plate axially spaced from a second plate by a radially outer connector. A first set of epicyclic gears supported adjacent the first plate include a first set of circumferentially offset intermediate gears meshing with a first sun gear and a first ring gear. A second set of epicyclic gears are axially spaced from the first set of epicyclic gears and supported adjacent the second plate, and include a second set of circumferentially offset intermediate gears meshing with a second sun gear and a second ring gear. The first epicyclic gear set and the second epicyclic gear set maintain relative intermeshing alignment during flexure induced deformation of the carrier.
Abstract:
An epicyclic gear system (A) includes a sun gear (2), a ring gear (4) located around the sun gear (2) and planet pinions (6) located between the sun and ring gears (2,4). The planet pinions (6) rotate on a carrier (8) that includes flexpins (20) that are cantilevered from a wall (12) of the carrier (8) and sleeves (22) that are attached to the remote ends of the flexpins (20) and extend back over the flexpins (20) to create a double cantilever. Bearings (24) support the planet pinions (6) on the sleeves (22) so that the planet pinions (6) rotate about the flexpins (20). The double cantilever enables the flexpins (2) to flex such that the axes (Y) of the planet pinions (6) remain parallel to the common axis (X) of the sun and ring gears (2, 4). Each sleeve (22) has an integrated bearing race (44) and a bearing seat (42) that carries a separate bearing race (60). The sleeve (22) is easily detached from its flexpin (20) and the separate race (60) is easily removed from the sleeve (22) to disassemble the bearing (24) and remove the planet pinion (6).
Abstract:
A gear train (10) is provided that includes at least one side gear (12) comprising a helical face gear and a plurality of helical pinions (14) in meshing engagement with the helical face gear. The gear train (10) may further include an absorber (16) configured to provide an axial force on at least one of the plurality of helical pinions (14). A differential (22) may also be provided including a differential case (24) and a gear train (10) disposed in the differential case (24). The gear train (10) includes at least one side gear (12) comprising a helical face gear and a plurality of helical pinions (14) in meshing engagement with the helical face gear. The gear train (10) in the differential (22) may further include a means for providing an axial force on at least one of the plurality of helical pinions (14).
Abstract:
Planetengetriebe (10) mit einem ortsfesten Hohlrad (30), einem drehbaren Planetenträger (40), der eine geradzahlige Anzahl von wenigstens vier spiegelsymmetrisch angeordneten Planetenrädern (50a, 50b, 50c, 50d) aufweist, und einem Sonnenrad (60), dadurch gekennzeichnet, dass das Planetengetriebe (10) zwei sich dem Sonnenrad (60) gegenüberliegende, zwischen den Planetenrädern (50a, 50b, 50c, 50d) angeordnete Lager (80a, 80b) aufweist, die das An- oder Abtriebselement des Planetengetriebes (10) in der Mittelebene (M) des Planetenträgers (40) mit dem Planetenträger (40) verbinden, die Lager (80a, 80b) die gedachte Symmetrieachse bilden, und wenigstens zwei Planetenräder (50a, 50b) einen geringeren Abstand zueinander aufweisen als eines dieser Planetenräder (50a, 50b) zu einem weiteren Planetenrad (50c, 50d).
Abstract:
The invention relates to mechanical engineering and can be used, in particular for large wind power stations as a drive between a windwheel and a generator. The inventive planetary gearing comprises a body, central wheels and a carrier provided with pinions arranged thereon with the aid of anvils. The gearing pinions are embodied in a multicrown form and have one working surface at one concrete direction of a torsion torque. Small gear rims of all pinions are simultaneously engaged with the same central wheel of the internal gear, the number of pinions whose large gear rims are engaged with the same crown of the central wheel of the internal gear being less at least half as large. Said invention makes it possible to reduce the mass of the planetary gearing. For wind power stations of 660 kW, the mass reduction can reach 60 %, which is high in relation to the mounting height of the planetary gearing.