Abstract:
The present invention provides a method and apparatus for identifying an activation of a burst disk. A pressure data or a temperature data relating to a flow is received. A determination is made whether the flow is interrupted based upon the at least one of the pressure data and the temperature data. A burst disk activation is identified in response to determining that the flow is interrupted.
Abstract:
A method and system are disclosed for controlling a process by establishing a control factor for a proportional-integral-derivative (PID) controller used to control a parameter of a process relative to a setpoint. A feedback signal regarding the parameter of the process is received via a sensor of the process and a first feedback loop. Automatic adjusting of the control factor of the PID controller is based on the feedback signal.
Abstract:
A method and apparatus for use in controlling the reaction temperature of a fuel processor are disclosed. The apparatus includes a fuel processor reactor, the reactor including a water gas shift reaction section; a temperature sensor disposed within the reaction section; a coolant flow line through the reaction section; and an automated control system. The automated control system controls the reaction temperature by determining a first component for a setting adjustment for the actuator from the measured temperature and a setpoint for the measured temperature; determining a second component for the setting adjustment from a hydrogen production rate for the fuel processor; and determining the setting adjustment from the first and second components.
Abstract:
An apparatus and a method for use in controlling the apparatus are disclosed. The apparatus includes a purified hydrogen generator; at least one of a compression unit, a storage unit, and a dispensing unit; and a system controller. The system controller is capable of monitoring the operation of the hydrogen generator and the compression unit, storage unit, or dispensing unit at a system level and shutting down at least one of hydrogen generator and the compression unit, storage unit, or dispensing unit upon the detection of a dangerous condition. The method includes monitoring the generation of a purified hydrogen stream from a system level; monitoring the at least one of a compression, a storage, and a dispensing of the purified hydrogen gas stream from the system level in concert with monitoring the purified hydrogen gas stream generation; and shutting down at least one of the purified hydrogen gas stream generation and the compression, the storage, or the dispensing upon the detection of a dangerous condition at the system level.
Abstract:
A method and apparatus for determining which condition in a fuel processor has initiated a shutdown of the fuel processor are disclosed. In general, the apparatus generates a plurality of shutdown initiator signals, each corresponding to one of a plurality of shutdown conditions and indicating whether such condition is present. The shutdown initiator signals are read within a predetermined window. At least one of the read shutdown initiator signals indicates that a corresponding first shutdown condition has occurred and identifies the corresponding first shutdown condition as the firstout.