Abstract:
Herein we disclose an apparatus, comprising: an air feed; a fuel feed; a combustion zone, capable of mixing and combusting air and fuel therein; a temperature sensor positioned within the combustion zone, capable of measuring the temperature of at least one point within the combustion zone; and a control system, comprising: a processor to which the temperature sensor is capable of reporting the measured temperature; and an air flow adjustment apparatus controlled by the processor and capable of adjusting the flow rate of air to the combustion zone in response to the reported temperature. We also disclose a reformer, a power plant, and a fuel cell comprising or associated with the apparatus. In addition, we disclose a method of maintaining the temperature of at least one point within a combustion zone within a desired temperature range, comprising: specifying the upper bound of the desired temperature range; feeding air and a fuel to the combustion zone, wherein the air is fed at an air feed rate, the fuel is fed at a fuel feed rate, the amount of air and the amount of fuel present in the combustion zone define an oxygen to fuel ratio ("O/C ratio"), provided the O/C ratio is greater than the stoichiometric O/C ratio; measuring the temperature of the at least one point within the combustion zone; and increasing the air feed rate, if the temperature of the at least one point within the combustion zone is greater than about the upper bound of the desired temperature range, provided the O/C ratio remains greater than the stoichiometric O/C ratio.
Abstract:
An apparatus and a method for use in controlling the apparatus are disclosed. The apparatus includes a purified hydrogen generator; at least one of a compression unit, a storage unit, and a dispensing unit; and a system controller. The system controller is capable of monitoring the operation of the hydrogen generator and the compression unit, storage unit, or dispensing unit at a system level and shutting down at least one of hydrogen generator and the compression unit, storage unit, or dispensing unit upon the detection of a dangerous condition. The method includes monitoring the generation of a purified hydrogen stream from a system level; monitoring the at least one of a compression, a storage, and a dispensing of the purified hydrogen gas stream from the system level in concert with monitoring the purified hydrogen gas stream generation; and shutting down at least one of the purified hydrogen gas stream generation and the compression, the storage, or the dispensing upon the detection of a dangerous condition at the system level.
Abstract:
A control technique for use in a fuel processor is disclosed. In one aspect, a control system includes a subsystem manager controller the operation of a respective physical subsystem for each of a plurality of physical subsystems in the fuel processor. The subsystem managers take their direction from a master control manager. In a second aspect, the subsystem managers collectively form a layer operating in conjunction with a second layer capable of interfacing the subsystem managers to their respective physical subsystems, a third layer capable of interfacing the subsystem managers with the second layer. In a third aspect, master control manager manages the operation of each physical subsystem through a respective subsystem manager, directs state transitions of the subsystem managers, and routs interaction between the subsystem managers from the master control manager.
Abstract:
A method and apparatus are disclosed. The apparatus includes a store of at least one historical sensor measurement, a store of potential cut-off frequencies, and a filter. Each potential cut-off frequency is associated with a respective potential difference between a sensor measurement and the stored historical sensor measurement. The filter has a cut-off frequency dynamically selected from the stored potential cut-off frequencies on the basis of a difference between the stored historical sensor measurement and a current sensor measurement. The method includes determining a difference between a current sensor measurement and a historical sensor measurement; and dynamically selecting a cut-off frequency for a filter for the current sensor measurement from the difference.
Abstract:
A method and apparatus for determining which condition in a fuel processor has initiated a shutdown of the fuel processor are disclosed. In general, the apparatus generates a plurality of shutdown initiator signals, each corresponding to one of a plurality of shutdown conditions and indicating whether such condition is present. The shutdown initiator signals are read within a predetermined window. At least one of the read shutdown initiator signals indicates that a corresponding first shutdown condition has occurred and identifies the corresponding first shutdown condition as the firstout.
Abstract:
An apparatus and method for producing hydrogen. The apparatus includes a fuel processor, a purification unit and a system controller. The controller determines a calculated flow of reformate from the fuel processor and operates the purification unit based on the calculated flow. The calculated flow is derived from a process model of the fuel processor and known feed(s) to the fuel processor. The calculated flow of reformate is used to control the flow of reformate to adsorbent beds within the purification unit and can be used to control other materials flows within the apparatus. Means for reducing fluctuations in the pressure and/or flow rate of reformate flowing from the fuel processor to the purification unit are also disclosed. The purity of the hydrogen produced can be maintained by adjusting the operation of the purification unit in response to changes in reformate composition, pressure and/or flow rate.
Abstract:
pressure and/or flow rate and means for reducing the fluctuations. The reformate comprises impurities that are removed by a purification unit having a plurality of adsorbent beds. A valve assembly controls the flow of reformate to the adsorbent beds based upon sensed product data generated by a product sensor. A compression unit optionally compresses the refonmate prior to entering the purification unit. Means for reducing fluctuations in the pressure and/or flow rate include a buffer and/or a conduit for providing a controlled flow of a supplemental fluid to an inlet of the compression unit. A product valve can control the flow of hydrogen-enriched reformate out of the purification unit. A controller can control the valve assembly, the flow of supplemental fluid and the product valve among other apparatus components to maintain a stable pressure within the purification unit and to produce a desired hydrogen-enriched reformate.
Abstract:
A method and system are disclosed for controlling a process by establishing a control factor for a proportional-integral-derivative (PID) controller used to control a parameter of a process relative to a setpoint. A feedback signal regarding the parameter of the process is received via a sensor of the process and a first feedback loop. Automatic adjusting of the control factor of the PID controller is based on the feedback signal.
Abstract:
The present invention provides a method and apparatus for identifying an activation of a burst disk. A pressure data or a temperature data relating to a flow is received. A determination is made whether the flow is interrupted based upon the at least one of the pressure data and the temperature data. A burst disk activation is identified in response to determining that the flow is interrupted.
Abstract:
A method and apparatus for providing a balanced fluid supply through multiple feeds are disclosed. The method comprises supplying the fluid through a plurality of feeds from a common fluid accumulator; determining the fluid pressure in a common fluid accumulator; and controlling the fluid pressure in the common fluid accumulator responsive to the fluid pressure sensed therein to maintain the fluid pressure within a predetermined range. The balanced fluid supply comprises a common fluid accumulator; a plurality of feeds from the common fluid accumulator; and a control system capable of controlling the pressure of the fluid supplied from the common fluid accumulator to the feeds responsive to a determined pressure of fluid in the common fluid accumulator.