Abstract:
According to an example, a method of analyzing an output of a sequencer is provided comprising identifying genetic targets, obtaining target signature snippets responsive thereto, each target signature snippet derived from a genetic sequence of the genetic targets, receiving portions of a test sequence output by a sequencer sequencing a sample in real time, determining, in real time or near-real time with the sequencer sequencing the sample, whether a target signature snippet of the target signature snippets is in at least one portion of the test sequence, determining, for each genetic target, a probability the genetic target is in the sample based on the determination of whether the target signature snippet is present in the at least one portion of the test sequence, and outputting an analysis of the sample indicating the respective probability that each genetic target is present in the sample.
Abstract:
In one aspect, a photonic device includes a substrate layer comprising magnesium fluoride and an optical guiding layer disposed on the substrate layer. The optical guide layer includes silicon dioxide. The substrate layer and the optical guide layer are transparent at an ultraviolet and visible wavelength range. In another aspect, a method includes oxidizing silicon to form a silicon dioxide layer, bonding the silicon dioxide layer to magnesium fluoride, removing the silicon and performing lithography and etching of the silicon dioxide to form a photonic device.
Abstract:
Optical sensing systems having improved vibration cancelation, and methods of achieving improved vibration cancelation. In one example, an optical sensing system (200) includes an optical sensor (210) configured to produce an unprocessed sensor output signal (215) representative of a response of the optical sensor to at least an optical signature of interest and a local vibration excitation, a reference sensor (220) configured to provide a reference signal responsive (225) to the local vibration excitation, and a controller (260), including an adaptive digital filter (230), coupled to the optical sensor and to the reference sensor, and configured to receive the reference signal and to adjust one or more coefficients of the adaptive digital filter to minimize coherence between a residual signal (255) and the reference signal, the residual signal being a difference between the sensor output signal and a filter output signal (235) from the adaptive digital filter.
Abstract:
An infrared bolometer. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. The graphene sheet has two contacts connected to an amplifier, and a power detector connected to the amplifier. Infrared electromagnetic power in the evanescent waves is absorbed in the graphene sheet, heating the graphene sheet. The power of Johnson noise generated at the contacts is proportional to the temperature of the graphene sheet. The Johnson noise is amplified and the power in the Johnson noise is used as a measure of the temperature of the graphene sheet, and of the amount of infrared power propagating in the waveguide.
Abstract:
A detector for detecting single photons of infrared radiation. A waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. An infrared photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
Abstract:
Methods of processing seismic data using a single triaxial geophone. In certain examples, such a method includes calibrating the single triaxial geophone sensor to determine a position and an orientation relative to a surrounding environment, configuring the single triaxial geophone sensor to receive seismic data from the surrounding environment along three orthogonal axes, measuring, with the single triaxial geophone sensor, a plurality of time series of seismic data from the surrounding environment for the three orthogonal axes, storing, with a computer system coupled to the single triaxial geophone sensor, the time series of seismic data from the surrounding environment for the three orthogonal axes, and processing, with the computer system, the time series of seismic data to identify a plurality of seismic waves of different polarizations.
Abstract:
A two-way speech-to-speech (S2S) translation system actively detects a wide variety of common error types and resolves them through user-friendly dialog with the user(s). Examples include features including one or more of detecting out-of-vocabulary (OOV) named entities and terms, sensing ambiguities, homophones, idioms, ill-formed input, etc. and interactive strategies for recovering from such errors. In some examples, different error types are prioritized and systems implementing the approach can include an extensible architecture for implementing these decisions.
Abstract:
A method for resisting tampering, the method including discovering a plurality of electronic packages for communication, each of the plurality of electronic packages having an associated quantum state table, mapping a plurality of communications paths among the plurality of electronic packages, for each communication path of the plurality of communications paths, making an entry into the quantum state table, negotiating key material for each of the plurality of communications paths, for a plurality of data exchanges along each of the plurality of communications paths generating a key, and encrypting a data exchange on a communications path with the key.
Abstract:
An unsupervised boosting strategy is applied to refining automatic word alignment. In some examples, the strategy improves the quality of automatic word alignment, for example for resource poor language pairs, thus improving Statistical Machine Translation (SMT) performance.
Abstract:
A photonic integrated circuit (PIC) is disclosed herein. The PIC can include a substrate, a main optical waveguide supported by the substrate. The main optical waveguide can be in communication with an electromagnetic radiation source, and configured to receive electromagnetic radiation from the electromagnetic radiation source. A first branch optical waveguide can be optically coupled to the main optical waveguide at a first location. An optical phased array (OPA) can include plurality of array elements, each having an optical antenna and an optical phase modulator. At least some array elements within a first subset of the plurality of array elements can be optically coupled to the first branch optical waveguide wherein locations of at least some of the plurality of array elements are aperiodic in one or more directions on the substrate.