Abstract:
A digital linear transmitter for digital to analog conversion of a radio frequency signal. The transmitter includes a delta sigma (ΔΣ) digital to analog converter (DAC) and a weighted signal digital to analog converter in the transmit path of a wireless device to reduce reliance on relatively large analog components. The ΔΣ DAC converts the lowest significant bits of the oversampled signal while the weighted signal digital to analog converter converts the highest significant bits of the oversampled signal. The transmitter core includes components for providing an oversampled modulated digital signal which is then subjected to first order filtering of the oversampled signal prior to generating a corresponding analog signal. The apparatus and method reduces analog components and increases digital components in transmitter core architecture of wireless RF devices.
Abstract:
A system for generating a supply voltage, temperature and process compensated gain control voltage from a digital data word. In particular, the compensated gain voltage control voltage maintains a linear relationship between a change in gain in response to an input gain control voltage for a gain circuit of a transmitter circuit. A monitor circuit senses at least one of the supply voltage, temperature and process parameters, and generates a first set of digital signals corresponding to the sensed parameter. A digital compensator circuit converts the input gain control voltage into a second set of digital signals, and decodes the combined first and second set of digital signals to provide a data word. The data word is converted into an analog voltage representing the compensated gain voltage control voltage. The digital compensator circuit includes a table of compensation values, each accessible by a distinct combination of the first and second set of digital signals.
Abstract:
The present invention relates generally to communications, and more specifically to a method and apparatus for generating local oscillator signals used for up- and down-conversion of RF (radio frequency) signals. A major problem in the design of modulators and demodulators, if the leakage of local oscillator (LO) signals into the received signal path. The invention presents a number of highly integratable circuits which resolve the LO leakage problem, using regenerative divider circuits acting on oscillator signals which are running at a multiple or fraction of the frequency of the desired LO signal, to generate in-phase (I) and quadrature (Q) mixing signals. Embodiments of these circuits also use harmonic subtraction and polyphase mixers, as well as virtual local oscillator TM (VLO) mixing signals. VLO mixing signals are signal pairs which emulate local oscillator signals by means of complementary mono-tonal and multi-tonal mixing signals.
Abstract:
The present invention relates generally to communications, and more specifically to a method and apparatus of modulating baseband and RF (radio frequency) signals. A modulator topology is disclosed in which an input signal x(t) is up-converted to an output signal y(t), either by mixing it with two mixing signals φ1 and φ2 ("pseudo-direct conversion" mode), or by mixing it with only one mixing signal φ2 ("direct-conversion" mode). In pseudo-direct modulation mode, the φ1 and φ2 mixing signals emulate a local oscillator signal; the product φ1* φ2 has significant power at the frequency of a local oscillator signal being emulated, but neither φ1 nor φ2 have significant power at the frequency of the input signal x(t), the LO signal being emulated, or the output signal φ1 φ2 x(t).
Abstract:
There is a need for an inexpensive, high-performance, fully-integrable, multi-standard transceiver, which suppresses spurious noise signals. The invention provides a topology that satisfies this need, using a first signal generator which produces an oscillator signal f1 and a second signal generator which produces a mono-tonal mixing signal φ2, where f1 is a multiple of the frequency of φ2; and a logic circuit for generating a multi-tonal mixing signal φ1, where φ1 * φ2 has significant power at the frequency of said local oscillator signal being emulated, neither of said cp1 nor said φ2 having significant power at the carrier frequency of said input signal x(t) or said LO signal being emulated.
Abstract:
There is a need for an inexpensive, high-performance, fully-integrable, multi-standard transceiver. The invention provides a topology that satisfies this need, consisting of: an active mixer, followed by a high pass filter, and a passive mixer. The input signal is modulated up, or demodulated down, using a pair of complementary, aperiodic mixing signals. The use of aperiodic mixing signals allows a fully-integrated transceiver to be built. Several embodiments of the active mixer are also presented, including those having electrically-adjustable performance and allowing multiple RF signal inputs. This allows the topology of the invention to be employed in multi-band, multi-frequency applications, while still providing high performance.