Abstract:
The present invention relates to a preassembly system comprising a support arrangement and a plurality of tower structures each having a mean diameter, D, wherein said plurality of tower structures are placed vertically on the support arrangement during preassembly and/or storage, the support arrangement comprising a set of attachments means for each tower structure, said attachment means being configured for positioning said plurality of tower structures with a mutual distance, a, wherein the ratio a/D is below 2.3, such as below 2.2, such as below 2.1, such as below 2.0 in order to reduce loads on the plurality of tower structures due to Vortex shedding while being secured to the preassembly system. The present invention further relates an associated method and a sea going vessel for transporting a plurality of vertically oriented tower structures.
Abstract:
A rotary machine for a wind turbine includes: a rotor; and a casing for housing the rotor and supported by a base portion so as to constitute a stator of the rotary machine. At least a part of the casing is configured to be rotatable together with the rotor while permitting relative rotation with respect to the base portion when a rotational force equal to or greater than a threshold torque value is applied to the rotor.
Abstract:
A wind turbine blade includes: a metal receptor including a blade tip of the wind turbine blade; and a blade body portion connected to the metal receptor so as to be positioned on a blade-root side of the metal receptor, the blade body portion having a hollow structure and forming an airfoil shape in a blade tip region of the wind turbine blade with the metal receptor in a joint region to the metal receptor. As seen in a blade-thickness direction of the wind turbine blade, a tangent to a joint line between the metal receptor and the blade body portion at an intersection between the joint line and a leading edge of the wind turbine blade is inclined from a chordwise direction of the wind turbine blade.
Abstract:
There is presented a method (320) for controlling a wind turbine (100), wherein said wind turbine comprises a wind turbine rotor (102) with one or more blades (103), wherein the wind turbine has a rated angular rotation speed (214) of the wind turbine rotor, said method comprising obtaining (322) information (323) on ambient conditions, determining, based on said information, if an erosion criterion is fulfilled, controlling (328) the wind turbine according to an extended mode if the erosion criterion is fulfilled, wherein in the extended mode an angular rotation speed of the wind turbine rotor is allowed to exceed the rated angular rotation speed (214).
Abstract:
Embodiments herein describe operating a control system for a wind turbine in a first mode and second mode of operation. When in the first mode, the wind turbine provides power to a local AC grid. However, when in the second mode, the wind turbine provides power to a high-voltage direct current (HVDC) link. The control system includes a reactive power control leg and an active power control leg. To switch from the first mode to the second mode, the control system activates a PI controller coupled between the reactive and active power control legs which increases the output voltage of the wind turbine until the magnitude of the voltage activates a diode rectifier and permits the power outputted by the wind turbine to be transmitted along the HVDC link.
Abstract:
Embodiments herein describe operating a first wind turbine using an auxiliary control system when a high-voltage link coupling a wind park to a grid is not functioning. When using the auxiliary control system, the first wind turbine provides power to a local AC grid which can be used to power auxiliary system in a second wind turbine while the second wind turbine is shutdown. However, when the high-voltage link is functional, the first and second wind turbines provide power to the high-voltage link using a primary control system.
Abstract:
A method of performing maintenance on a wind turbine component (18, 22, 24) of a wind turbine (10) having an integrated lifting apparatus (40). The method includes lifting a first temporary support (104) using the integrated lifting apparatus (40), coupling the first temporary support (104) to the nacelle (12) or the hub (16) and the integrated lifting apparatus (40), removing the wind turbine component (18, 22, 24) using the integrated lifting apparatus (40) and the first temporary support (104) in combination. The method may further include installing a replacement wind turbine component (18, 22, 24) using at least a part of the integrated lifting apparatus (40) and the first temporary support (104) in combination, decoupling the first temporary support (104) from the nacelle (12) or the hub (16) and the integrated lifting apparatus (40), and removing the first temporary support (104) from the wind turbine (10) using the integrated lifting apparatus (40). A system for performing maintenance on a wind turbine component (18, 22, 24) is also disclosed.
Abstract:
The invention relates to a method of preparing a wind turbine blade with a leading edge protection. The method includes applying a first layer of paint on the surface portion comprising the part of the leading edge to be protected, applying a layer of a fibrous material on top of the first layer of paint, applying a second layer of paint on the layer of fibrous material, and allowing the applied leading edge protection to cure. The method may be performed as a part of the manufacture of the blade and/or as a post-processing step for example during repair on site. The proposed method results in an increased erosion resistance and improved protection against impacting particles. The invention further relates to a wind turbine blade comprising a leading edge protection established as mentioned above.
Abstract:
A power pack [2] is located within a housing [3] on the platform [1] of a wind turbine generator tower. The power pack [2] is supplied from a fuel tank [4]. With the door [6] of the housing [3] open, the power pack [2] may be removed for servicing and repair by using a U-shaped support structure [8] to which an electric motor [11] is mounted. Two support rails [12] permanently located within the housing [3] support the housed power pack [2]. A chain [15] attached to the power pack [2] is driven by the motor [11] to remove the power pack [2] from the housing [3] by sliding the power pack [2] along the support structure [8]. A pulley arrangement reduces the necessary torque. After removing the power pack [2] from the housing [3], a crane [7] is used to lift the power pack [2] from the platform [1] and to lower it down to a sea vessel [17]. The crane [7] may also be used in the refilling of the fuel tank [4] by hauling a fuel line [18] from a sea vessel up to the platform [1] and connecting it to the fuel tank [4].
Abstract:
A method, a computer system, and software for designing a foundation for a wind turbine. To facilitate FEED study, the method comprises the use of predefined wind turbines, load parameters, load scenarios, and load models, for establishing load data sets. The load data sets are used for designing foundations for the wind turbines. The method enables a faster design of wind turbine installations including wind turbine and foundation in a process where load data sets are defined or definable for a number of combinations between predefined wind turbines and predefined load scenarios, by use of pre-defined models. Further the method provides a consistent basis for design of wind turbine installations and the method enables several independent entities to design foundations and make evaluation of load conditions in an identical and consistent way.