Abstract:
One example of determining well fluid flow velocity based on vortex frequency is implemented using a well fluid flow velocity measurement system. The system includes a well fluid flow monitoring unit to determine a parameter of a well fluid flow in response to a vortex being produced in a well fluid, and provide the parameter. The system also includes a controller to receive the parameter determined by the flow monitoring unit, determine a frequency of the vortex from the received parameter, and determine a flow velocity of the well fluid based on the determined frequency.
Abstract:
Disclosed are systems and methods for monitoring drilling fluids. One system includes a flow path containing a fluid having at least one component present therein, and a movable housing having at least one optical computing device configured to move with the movable housing along a detection path, the at least one optical computing device including at least one integrated computational element (ICE) configured to optically interact with the fluid over the detection path, wherein the at least one ICE is configured to detect a characteristic of the at least one component and generate an output signal corresponding to the characteristic.
Abstract:
Disclosed are intelligent casing collars and cement wiper plugs used in wellbore cementing operations. A disclosed well system includes a casing string extending from a surface location within a wellbore, an annulus being defined between the casing string and the wellbore, a casing collar included in the casing string and having one or more sensors configured to measure at least one fluid property of a fluid present within the annulus, a cement wiper plug arranged within the casing string and communicably coupled to the casing collar such that measurement data obtained by the one or more sensors is conveyed to and received by the cement wiper plug, and a pulser associated with the cement wiper plug and configured to transmit pressure pulses to the surface location, wherein the pressure pulses correspond to the measurement data received from the one or more sensors.
Abstract:
A method and a system of analysing multiphase fluid flow in at least one well or pipeline is provided, the method comprises characterising slug flow in the multiphase fluid flow by receiving a plurality of well pressure data from the at least one well, processing the plurality of well pressure data to obtain a time- varying slug amplitude and/or a time-varying slug period for slugs in the slug flow, analysing the slug amplitudes and/or the slug periods over a period of time to thereby determine a measure of well performance. Also an oil field monitoring system for an oil field comprising a plurality of wells is provided. Each well has a pressure gauge installed to measure a well pressure and is connected to a multiphase fluid flow analysing system. An oil field unit receives the measure of well performance from the multiphase fluid flow analysing system, and output the measures of well performance for each of the plurality of wells.
Abstract:
The present disclosure relates to methods for determining the compressibility of downhole fluids using measurements obtained during over-pressurization of a formation fluid sample. In certain embodiments, the density of the fluid may be measured as the fluid is directed through a flowline into a sample chamber. The density measurements can be employed in conjunction with pressure spikes that occur during over pressuring of a sample chamber to determine the compressibility.
Abstract:
A method can include deriving a cloud of microseismic events corresponding to a fracturing operation in an environment by spatially locating the microseismic events in the environment via a seismic velocity model; extracting a set of fracture planes from the microseismic cloud; assigning characteristics to the fracture planes; determining a second-rank fracture compliance tensor and a fourth-rank fracture compliance tensor based on the characteristics of the fracture planes; determining a change in elastic stiffness of the environment using the second-rank fracture compliance tensor and the fourth-rank compliance tensor; and updating the seismic velocity model based at least in part on the change in the elastic stiffness of the environment or determining permeability in the environment based at least in part on fracture plane locations, orientations and apertures. Various other apparatuses, systems, methods, etc., are also disclosed.
Abstract:
A technique facilitates selection of optimum flow control valve settings to improve a desired objective function in a multizone well having zonal isolation. A network of flow control valves is provided in a completion network disposed along isolated well zones of at least one lateral bore of the multizone well. Data is acquired from downhole in the multizone well and processed on processor system modules which may be used in selected combinations. Examples of such modules comprise completion network modules, deconvolution modules, optimization modules, and/or inflow-outflow modules. The modules are designed to process the collected data in a manner which facilitates adjustment of the flow control valve settings in the network of flow control valves to improve the desired objective function.
Abstract:
A technique is provided for modeling flow simulations at downhole reservoir conditions and rock formations after performing wellbore perforations. By utilizing these flow simulations, a user may be able to simulate and compare different scenarios, thereby facilitating a more effective, profitable, and realistic choice of perforating systems and operating conditions.
Abstract:
Optical window assemblies are disclosed herein. An example apparatus includes a first fixture defining a fluid flow passageway. The example apparatus also includes a second fixture defining an aperture. The second fixture is coupled to the first fixture. A first optical window is disposed in the aperture. The first optical window has a first end and a second end. The first end is to be in contact with fluid in the fluid flow passageway, and a cross-sectional size of the first optical window decreases from the first end toward the second end along a portion of the first optical window.
Abstract:
A monitoring tool, including an obstructor portion operatively arranged to impede fluid flow past the monitoring tool when the obstructor is engaged with a corresponding seat member. A disintegrable portion is included formed from a material operatively arranged to disintegrate upon exposure to a selected fluid. A gauge is coupled with the obstructor portion and the disintegrable portion. The gauge is operatively arranged to monitor one or more parameters and released from the obstructor portion when the disintegrable portion is disintegrated by the selected fluid. A method of monitoring one or more parameters is also included.