Abstract:
The invention provides a graft polymer-containing substrate for reducing nonspecific adsorption of impurities as well as specifically capturing a target substance by forming a polymer membrane on a substrate and immobilizing a target substance-capturing body that captures the target substance thereon, and a method for producing the same. Furthermore, the present invention provides a target substance-detecting element and detection kit that detect substance alone with high sensitivity by using the above-mentioned graft polymer-containing substrate.
Abstract:
A method for forming polymer carbon nanotube composites, the method comprising: contacting carbon nanotubes with ozone to functionalize the sidewalls of the carbon nanotubes with at least one oxygen moiety; and reacting the functionalized carbon nanotubes with at least one monomer or at least one polymer or copolymer to attach polymer chains to the sidewalls of the carbon nanotubes.
Abstract:
The invention relates to nanocomposites comprising of (i) hydrogels synthetized by copolymerization of N-isopropylacrylamide and/or acrylamide and/or acrylic acid monomers and of (ii) layer silicates, and to the process for preparing them. The invention covers osmotically active hydrogel expanders containing said nano-composites, suitable for tissue expansion and the use of said materials for obtaining live skin.
Abstract:
A process for modifying the surface of an inorganic or organic substrate with strongly adherent nanoparticles is described, providing to the surface modified substrate durable effects like hydrophobicity, hydrophilicity, electrical conductivity, magnetic properties, flame retardance, color, adhesion, roughness, scratch resistance, UV-absorbance, antimicrobial properties, antifouling properties, antiprotein properties, antistatic properties, antifog properties, release properties. In this process, an optional first step a) a low-temperature plasma, ozonization, high energy irradiation, corona discharge or a flame is caused to act on the inorganic or organic substrate, and in a second step b) one or more defined nanoparticles or mixtures of defined nanoparticles with monomers, containing at least one ethylenically unsaturated group, or solutions, suspensions or emulsions of the afore-mentioned substances, are applied, preferably at normal pressure, to the inorganic or organic substrate. In a third step c) suitable methods are applied to dry or cure those afore-mentioned substances and, optionally, in a fourth step d) a further coating is applied on the substrate so pretreated.
Abstract:
Nano-oxide particles are surface-protected with a polyvinyl monomolecular film having a binding functional group. The surface-protected nano-oxide particles are produced through vinyl polymerization of a vinyl monomer having a binding functional group in a solution containing nano-oxide particles, the vinyl monomer having the binding functional group, and a dispersion medium. The dispersion medium is contained in the solution in an amount of 70 wt. % or more.
Abstract:
The development of compositions and aromatic sulfur acrylate monomers results in improved hardcoat films, and improved optical films that contain the hard coat films. The films provide display systems when incorporated thereon. The combination of functionalized zirconia nanoparticles with multifunctional acrylate crosslinkers and high index of refraction aromatic sulfur acrylates, 1.58 or greater, produces abrasion resistant hard coats that have relatively high refractive indices .