Abstract:
The disclosed invention provides a sweat sensor device (100) capable of high performance stimulation and sensing at the same site on the skin (12), by mechanically colocating the sensing and stimulation components (102, 104) when stimulation and sensing are needed, and by mechanically removing one or both of the stimulation or sensing components (104, 102) when stimulation and/or sensing are not needed.
Abstract:
Methods for fabricating a localized surface plasmon renosance (LSPR) biosensing microfluidic or spot-plate device that combines the techniques photolithography and hole-mask colloidal lithography in a unique way to yield highly sensitive yet cost-efficient devices capable of miniaturization and portability, along with the devices and methods of utilizing the devices are disclosed. The desired device pattern is transferred to a photoresist on a substrate using photolithography; at least two coats of polymer are spin-coated onto the substrate to form a polymer layer, a plurality of polystyrene particles of a desired shape and size are drop-coated on the polymer layer, a nanomeric layer of gold is deposited thereover, the polystyrene particles are removed, the hole-mask is etched, a plasmonic metal is deposited into the holes, and the polymer layer and photoresist are then removed prior to optionally sealing with a cover.
Abstract:
A modular reamer system that allows for intra-articular assembly of a low profile reamers for drilling bone tunnels in joint ligament reconstruction, and having particular utility in a retrograde technique for drilling a femoral tunnel in anterior cruciate ligament reconstruction. The reamer system components include a holder that may be detachably coupled to a reamer, and a guide pin that may be detachably coupled to the reamer, utilized in a surgical method that then permits the joint space to be free of tools during femoral drilling, enabling the knee to be held in a more relaxed surgical position, increasing fluid flow and therefore visibility during the drilling operation.
Abstract:
A sweat sensing device (20) comprises at least one sweat generation unit (22) capable of initiating sudomotor axon reflex (SAR) sweating in an indirect stimulation region and at least one analysis unit (24, 26) capable of sensing a physiological parameter of sweat, collecting a sweat sample, or a combination thereof. The at least one analysis unit (24, 26) is located above the indirect stimulation region when the sweat sensing device is placed on skin.
Abstract:
A biomedical implant (16, 18) is formed from magnesium (Mg) single crystal (10). The biomedical implant (16, 18) may be biodegradable. The biomedical implant (16, 18) may be post treated to control the mechanical properties and/or corrosion rate thereof said Mg single crystal (10) without changing the chemical composition thereof. A method of making a Mg single crystal (10) for biomedical applications includes filling a single crucible (12) with more than one chamber with polycrystalline Mg, melting at least a portion of said polycrystalline Mg, and forming more than one Mg single crystal (10) using directional solidification.
Abstract:
A sweat sensor device (400c) for sensing sweat on the skin (12) includes one or more sweat sensors (420) and a volume-reducing component that provides a volume-reduced pathway (480) for sweat between the one or more sweat sensors (420) and sweat glands in said skin (12) when the device (400c) is positioned on said skin (12). The volume-reducing component may include a volume -reducing material (470) and a pressure-permeated component (460), a sweat dissolvable material (490), a mechanically compliant material (570) for conforming to the skin (12), an adhesive with a vertically anisotropic sweat pathway, and microcapsules (1385) including a barrier material. The presence of a volume-reducing component reduces the sweat volume and decreases the sampling interval.
Abstract:
Disclosed are methods and compositions for treating Type I diabetes in a subject. Agents selected from a TLR4 agonist, a TLR4/MD-2 agonist, or a combination thereof may be used in the disclosed methods and compositions. Also disclosed are methods of restoring adaptive immune T cell tolerance, treating pernicious insulitis, improving immune tolerance, and treating autoimmune diseases using the disclosed methods and compositions.
Abstract:
The homogeneous hydrogenation of organic carbonyls, especially esters, under relatively mild conditions using iron hydrido-borohydride catalyst complexes having amino-phosphine pincer ligands. The catalyst and process are well-suited for catalyzing the hydrogenation of a wide variety of organic carbonyls, such as hydrogenation of fatty acid esters to alcohols. In particular embodiments, the process can be carried out in the absence of solvent.
Abstract:
Devices that sense sweat and are capable of providing chronological assurance are described. The device (600) uses at least one sensor (620) to measure sweat or its components and to determine a sweat sampling rate. The chronological assurance is determined, at least in part, using the sweat sampling rate. The sweat sampling rate may be determined, at least in part, using a sweat volume (640) and/or a sweat generation rate, both of which may be measured or predetermined.
Abstract:
A patient- specific total hip arthroplasty system including surgical guide and jig instrumentation modeled by computer aided design using image data derived from a specific patient's relevant anatomy. Patient- specific jigs fit surface topography of portions of the acetabulum and femur of the patient and are designed to guide surgical implantation at very precise geometries unique to each patient. Patient- specific pin-locating jigs, pin-rail and spacer systems, acetabular reaming and impacting jigs, and femoral resection and version jigs are fabricated pre-operatively according to the models. Methods for fabricating jig components of the system and methods of performing a total hip arthroplasty utilizing the system are also disclosed.