Abstract:
An apparatus and method may provide effective preservation and usage of preserved blood or blood components. A blood preservation apparatus may include a plurality of collection bags that may be separated by separator mechanisms to enable rapid separation of the collection bags from the blood preservation apparatus when the apparatus is frozen.
Abstract:
A drilling system including a motor that produces a sonic, linear oscillatory motion is provided for removing a frozen biological sample from a stored frozen specimen and methods of use thereof without thawing the remainder of the specimen. The stator and slider assembly is operated by a servo controller which can communicate and be programmed through a port of a PC equipped with software.
Abstract:
The present invention provides methods for providing cartilage-containing tissue for grafting, comprising providing excised cartilage-containing tissue; and treating said excised cartilage-containing and cryogenically preserving the treated cartilage-containing tissue under appropriate cryogenic preservation conditions so as to yield cryogenically preserved cartilage-containing tissue having at least 10% viable chondrocytes throughout the cartilage portion of the cartilage-containing tissue after preservation, as tested in a live/dead ratio assay. Treatment may comprise providing one or a plurality of incisions in said cartilage portion to a predetermined depth therein and/or introducing a cryoprotectant agent at least into said cartilage portion. The invention also provides viable cartilage obtainable by the methods of the invention, methods of grafting such preserved, viable cartilage containing tissue in a recipient, as well as apparatuses, vessels and systems for preparing a cartilage-containing tissue for cryogenic preservation and subsequent grafting in a recipient.
Abstract:
An apparatus and method may provide effective preservation and usage of preserved blood or blood components. A blood preservation apparatus may include a plurality of collection bags that may be separated by separator mechanisms to enable rapid separation of the collection bags from the blood preservation apparatus when the apparatus is frozen.
Abstract:
Methods and devices are provided for reducing the concentration of low molecular weight compounds in a biological composition containing cells while substantially maintaining a desired biological activity of the biological composition. The device comprises highly porous adsorbent particles, and the adsorbent particles are immobilized by an inert matrix.
Abstract:
A long rectangular slotted-sheath construct (10) generally referred to as a "cassette", functions both in the positioning of and the treating of the individual, cell-containing primary units (1) held therein. The invention also embraces a cooling and thawing system (30) within which primary containers of cells, with or without a surrounding cassette, may be cooled, stored and rewarmed.
Abstract:
The present Invention discloses automatic devices configured to perform a cryoprocedure on at least one biological sample carried by one or more carriers. The device comprising a carrier holder, a container holder, a carrier driver and a container driver. The carrier holder is configured to receive and hold the one or more carriers in an upright orientation while holding the at least one biological sample. The container holder is configured to hold two or more containers each in a predetermined location on the container holder. The carrier driver is configured to translate the carrier holder. And the container driver is configured to translate the predetermined locations so as to position one of them in a position accessible to the carrier holder, so as to enable the carrier driver to submerge an active portion of each one or more carriers held by the carrier holder in a predetermined vertical depth in the position accessible to the carrier holder.
Abstract:
The present invention relates to a gas delivery device comprising a gas releasing molecule and a gas permeable membrane. The invention also relates to the use of the gas delivery device for delivery of gas to an extracorporeal transplant, extracorporeal cells, a brain-dead transplant donor or foodstuff and in therapy. The invention further relates to the use of a gas permeable and liquid and solid impermeable membrane to separate a gas releasing molecule and its non-gaseous degradation products from an extracorporeal transplant, extracorporeal cells, a brain-dead transplant donor or foodstuff.
Abstract:
Disclosed are devices and methods for non-cryogenic vitrification of biological materials that include the steps of providing one or more capillary channels of which a first opening is operably in contact with a moisture containing vitrification mixture made of a biological material and a vitrification agent. The capillary absorbs and transports the moisture to the second opening through capillary action, and the moisture is subsequently evaporated into a surrounding low humidity atmosphere until the vitrification mixture enters into a vitrified state.
Abstract:
This disclosure is a system for heating a biological material in a vessel. The system can include a heating device configured to transmit energy to the vessel and a base moveably coupled to the heating device. The system can also include a processor configured to receive an input associated with a target temperature, and transmit a signal to controllably move the heating device relative to the base for a time period, wherein the time period is determined based on the target temperature and content volume.