Abstract:
A portable pressure differential generating system having a portable flow accelerator (100) having with a high pressure region (110) with a first cross sectional area and a low pressure region (106) with a second cross sectional area, the first cross sectional area being larger than the second cross sectional area. The accelerator (100) further includes an accelerator low-pressure tap (104) in fluid connection with the low-pressure region (106) of the flow accelerator, the low-pressure tap (104) is adapted for fluid connection with a low-pressure port of a pressure-measuring device. The accelerator further includes an accelerator high-pressure tap (108) in fluid connection with the high-pressure region (110) of the flow accelerator (100), the high-pressure tap adapted for fluid connection with a high pressure port of a pressure measuring device. The system includes a portable pump (124) in fluid connection with the passage in the flow accelerator (100).
Abstract:
La présente invention concerne un appareil de contrôle de pression d’air ou de gaz qui à partir d’une source comprimée permet de gérer l’établissement de pressions variables en paliers fixes appelés points de consigne. La chambre 1 générant ainsi des paliers de pression variables appelés points de consigne. Cette chambre est reliée à l’appareil à contrôler et au mesureur de référence. Le dispositif comporte un volume intermédiaire 1 relié à la source de pression P et à l’atmosphère PA par l’intermédiaire de deux électrovannes A et E. Celles-ci sont gérées en fonctionnement par une carte électronique 5, 5’ assurant à partir d’un clavier et d’un microprocesseur la gestion fine de la pression à l’intérieur de la chambre.
Abstract:
A sensor drift correction apparatus (20) includes a sensor package (22) which includes a fluid conduit (24), a proportional controller (26), a temperature sensor (28), a first pressure sensor (30), an integral controller (32) and a second pressure sensor (34). Bus (36) connects first pressure sensor (30), etc. to a micro-controller (38) having an associated internal or external memory (40). Included in memory (40) are an initial parameter specification module (42), a standard mode control module (44), a calibration condition identification module (46), a sensor drift calculation module (48) and a sensor drift adjustment mode operation module (50) which together act to identify a calibration command, identify a nominal zero pressure drift correction factor for sensor (30, 34) by relying upon a calibration voltage value and a calibration temperature value secured at nominal zero pressure condition, and subsequently adjusting sensor output accordingly.
Abstract:
A detonation pickup testing system, comprising: (i) apparatus for coupling to at least one terminal of a detonation pickup; and (ii) a computational system, for communicating with the pickup via with the apparatus, to test at least one characteristic, excluding or in addition to DC resistance, of the detonation pickup.
Abstract:
A system includes at least one pressure sensor (140) that is configured to generate (810) a first signal in response to sensing a process and generate (815) a second signal in response to sensing a drift detection condition different from the process. The system includes at least one processing device (120) that is configured to determine (810) a pressure measurement (P process ) of the process using the first signal, and determine (815) a pressure measurement (AP2) of the drift detection condition using the second signal. The at least one processing device is configured to compare (820) the pressure measurement of the drift detection condition to one of: the pressure measurement of the process or a reference value (125). The at least one processing device is configured to identify (825) whether drift has deteriorated accuracy of the at least one pressure sensor based on the comparison.
Abstract:
Vorrichtung (1) zur Messung des Drucks p eines durch eine Rohrleitung (2, 51) strömenden Fluids (3), umfassend mindestens einen an einem Außenumfang (2a, 51a) der Rohrleitung (2, 51) angeordneten primären Sensor (4) zur Messung einer vom Druck p abhängigen primären physikalischen Messgröße (100), wobei der Absolutwert des Drucks p durch Verrechnung dieser primären physikalischen Messgröße (100) mit mindestens einer Eichgröße (101) erhältlich ist und wobei diese Eichgröße (101) sich auf die Geometrie und/oder auf mindestens eine Materialeigenschaft der Rohrleitung (2, 51) bezieht, ferner umfassend Mittel (5) zur Ermittlung der Eichgröße (101) sowie eine Auswerteeinheit (6) zur Ermittlung des Drucks p aus der primären physikalischen Messgröße (100) in Verbindung mit der Eichgröße (101), wobei die Mittel (5) zur Ermittlung der Eichgröße (101) x ein fluidisch mit der Rohrleitung (2) verbindbares Messrohr (51), das sich im Material und/oder in der Querschnittsgeometrie vom Rest der Rohrleitung (2) unterscheidet und für das die Eichgröße (101) bekannt ist, wobei der primäre Sensor (4) an einem Außenumfang (51a) des Messrohrs (51) angeordnet ist, und/oder x mindestens einen an einem Außenumfang (2a, 51a) der Rohrleitung (2) oder des Messrohrs (51) angeordneten Eichsensor (52), der physikalisch auf die Eichgröße (101) sensitiv ist, umfassen.
Abstract:
A field device commissioning system, may include, but is not limited to, a commissioning tool. The commissioning tool is configured to communicate with a plurality of field devices and a repository. The commissioning tool is configured to: provide a user interface with at least one template of a plurality of templates in the repository for selection; determine, using at least one parameter in at least one of a control system loop information file and a field device information file in the repository, check functions for at least one of the plurality of field devices; provide the user interface with information which identifies at least one of the plurality of field devices for selection; and generate, using a selected template, tasks associated with the determined check functions for the selected at least one field device.
Abstract:
A method of calibrating a sensor, comprising: - determining a position of the sensor; - providing sensor data comprising identification data and the position of the sensor to a calibration data provider; - obtaining calibration data from the calibration data provider; and - calibrating the sensor in accordance with the calibration data.
Abstract:
A system and a method detect contamination of a diaphragm in a capacitance diaphragm gauge wherein a contaminated diaphragm deflects less in the presence of pressure than an uncontaminated diaphragm. The system and method measure a base pressure. A DC voltage is applied between the diaphragm and a fixed electrode to cause the diaphragm to deflect to simulate an effective pressure. The system and method measure a combined pressure caused by the base pressure and the effective pressure. The system and method subtract the base pressure to determine the effective pressure caused by the static diaphragm deflection. If the measured effective pressure is less than an acceptable effective pressure, the system and method determine that the diaphragm is contaminated.
Abstract:
A digital pressure transducer includes a sensor, a memory component and a microprocessor. A correction algorithm and set of correction coefficients are provided and stored in the memory. An application applies the correction coefficients to convert digitized values to pressure values. The transducer may include a read/write port adapted to communicate with a computer terminal; and at least one read-only port adapted to communicate with a host device. A method of calibrating a digital pressure transducer includes storing a correction algorithm and correction coefficients in the digital pressure transducer separate from a host device.