Abstract:
Disclosed are methods for acquiring a forward channel in a point-to-multipoint CDMA system. One method includes the steps of (a) despreading a received CDMA signal with a first pn code that is known to be present in the received CDMA signal and obtaining a first measure of received signal level; (b) despreading the received CDMA signal with a second pn code that is known not to be present in the received CDMA signal and obtaining a second measure of received signal level; and (c) synchronizing to a desired channel using a difference between the first and second signal levels. In this method the first step of despreading despreads a continuously transmitted side-channel, and the step of synchronizing synchronizes to the side-channel. Also, the step of obtaining a first measure of received signal level obtains a correlation peak, and the step of obtaining a second measure of received signal level obtains a correlation null. Preferably, the steps of despreading and obtaining are accomplished iteratively over a range of n first pn code phase states and over a range of n second pn code phase states.
Abstract:
A system that incorporates the subject disclosure may include, for example, a method for measuring a power level in at least a portion of a plurality of resource blocks occurring in a radio frequency spectrum, wherein the measuring occurs for a plurality of time cycles to generate a plurality of power level measurements, calculating a baseline power level according to at least a portion of the plurality of power levels, determining a threshold from the baseline power level, and monitoring at least a portion of the plurality of resource blocks for signal interference according to the threshold. Other embodiments are disclosed.
Abstract:
Aspects of the present invention include methods, systems, and computer-readable medium for canceling interference in wireless communication. The method includes receiving wireless CDMA communication signals using one or more antennas at least from a first entity via a first communication channel and a second entity via a second communication channel, determining a set of known characteristics associated with the first entity, the first set of characteristics comprising a first signal strength, a first synchronization information, and an first channel identification information, and determining an aggregate signal matrix based on signals received from at least the first entity and the second entity. The method further includes determining a covariance matrix associated with the aggregate signal value, determining a reference signal matrix based on the set of known characteristics, calculating an interference matrix by subtracting the reference signal matrix from the covariance matrix, and removing the interference estimation from the communication signals.
Abstract:
The present application relates to a method of a wireless device for interference cancellation (IC) in a cellular radio network system comprising a serving network node serving said wireless device. The method comprises using l a first IC method for at least partly removing a time aligned symbol of an interfering radio signal from at least a first symbol of a time slot received from the serving network node. The method also comprises using 2 a second IC method, different from the first IC method, for at least partly removing a non-time aligned symbol of an interfering radio signal from at least a second symbol of said time slot received from the serving network node.
Abstract:
A radio receiver uses a first receiver type for receiving data and/or control information on one or more secondary carrier channel(s) if one or more common channel(s) are transmitted on the corresponding secondary carrier. Otherwise, the radio receiver uses a second receiver type for receiving data and/or control information on one or more secondary carrier channel(s).
Abstract:
A method for noise rise estimation in a wireless communication system comprises measuring (210) of received total wideband power a plurality of times and computing (212) of an estimate of a noise floor measure based on at least a number of the measured received total wideband powers. The method further comprises performing (214) of an interference whitening based on one of GRAKE, GRAKE+ and chip equalizer for a first user and determining (216) of a user equivalent total wideband power as an available total wideband power after the interference whitening for the first user. The estimate of a noise floor measure is compensated (218) for the interference whitening into a user equivalent noise floor measure and a noise rise measure for the first user is calculated (220) based at least on the user equivalent total wideband power and the user equivalent noise floor measure.
Abstract:
The present invention relates to a method and apparatus for estimating a received signal power of a first transmission channel at a receiving node in a communications system wherein a received signal comprises information transmitted by a transmitting node over at least two transmission channels. The received signal power of a second of the at least two transmission channels is measured, and together with an estimate of the relationship between the transmission power of the second transmission channel and the transmission power of the first transmission channel; the measurement of the received signal power is used in estimating the received signal power of the first transmission channel.
Abstract:
A system and method provides adaptive digital front end control of an incoming radio frequency (RF) signal to identify RF characteristics in that signal, such as interference or desired data signals and adaptively control digital filter elements to selectively tune only portions of the RF signal to produce a filtered output signal, on a per cycle basis, prior to communicating the RF signal to an underlying wireless communication device, such as a base station in cellular network, cellular phone, wireless router base station, cognitive radio, or other wireless communication device. Each digital filter element may be tuned in frequency and bandwidth of operation and collectively the elements form an adaptive filter stage with elements configurable into both bandpass and bandstop filters for cascaded operation.