Abstract:
A method of calculating combining weight vectors associated with a received composite information signal comprising at least one data stream transmitted from at least a first antenna and a second antenna is disclosed. The method starts with computing a parametric estimate of an impairment covariance matrix including at least a first impairment term associated with common pilots deployed by the first antenna and the second antenna respectively. The first impairment term captures effects of interferences between the common pilots, in addition to effects of interferences caused by each common pilot singly. The impairment covariance matrix further includes a data covariance term capturing effects of the at least one data stream and an interference term caused at least partially by contribution of thermal noise of receiver branches. Then the method computes the combining weight vector using the computed impairment covariance matrix.
Abstract:
A radio receiver uses a first receiver type for receiving data and/or control information on one or more secondary carrier channel(s) if one or more common channel(s) are transmitted on the corresponding secondary carrier. Otherwise, the radio receiver uses a second receiver type for receiving data and/or control information on one or more secondary carrier channel(s).
Abstract:
A method for noise rise estimation in a wireless communication system comprises measuring (210) of received total wideband power a plurality of times and computing (212) of an estimate of a noise floor measure based on at least a number of the measured received total wideband powers. The method further comprises performing (214) of an interference whitening based on one of GRAKE, GRAKE+ and chip equalizer for a first user and determining (216) of a user equivalent total wideband power as an available total wideband power after the interference whitening for the first user. The estimate of a noise floor measure is compensated (218) for the interference whitening into a user equivalent noise floor measure and a noise rise measure for the first user is calculated (220) based at least on the user equivalent total wideband power and the user equivalent noise floor measure.
Abstract:
A transmitter, channel coder, and method for coding and transmitting a sequence of symbols in a digital communication system utilizing soft pilot symbols. In one embodiment, the transmitter transmits a set of soft pilot symbols with higher reliability than the remaining symbols in the sequence by modulating the soft pilot symbols with a lower order modulation such as BPSK or QPSK while modulating the remaining symbols with a higher order modulation such as 16QAM or 64QAM. The transmitter shares the modulation type and location (time/frequency/code) of the soft pilot symbols with a receiver. Unlike traditional fixed pilots, the soft pilots still carry some data. Additionally, the soft pilots are particularly helpful in establishing the amplitude reference essential in demodulating the higher order modulation symbols. In another embodiment, soft pilot symbols are inserted by low-level puncturing of channel encoded bits and replacing the punctured bits with known bit patterns.
Abstract:
A transmitter, channel coder, and method for coding and transmitting a sequence of symbols in a digital communication system utilizing soft pilot symbols. In one embodiment, the transmitter transmits a set of soft pilot symbols with higher reliability than the remaining symbols in the sequence by modulating the soft pilot symbols with a lower order modulation such as BPSK or QPSK while modulating the remaining symbols with a higher order modulation such as 16QAM or 64QAM. The transmitter shares the modulation type and location (time/frequency/code) of the soft pilot symbols with a receiver. Unlike traditional fixed pilots, the soft pilots still carry some data. Additionally, the soft pilots are particularly helpful in establishing the amplitude reference essential in demodulating the higher order modulation symbols. In another embodiment, soft pilot symbols are inserted by low-level puncturing of channel encoded bits and replacing the punctured bits with known bit patterns.
Abstract:
A receiver employs low-rate processing to synthesize the effect of high-rate interference in a received multi-rate signal. Each high-rate subchannel is analyzed on its low-rate descendents to produce symbol estimates for each low-rate symbol interval. The symbol estimates are applied to low-rate descendent subchannels, which are then combined to synthesize the effects of the high-rate interference. An interference canceller processes the synthesized interference with the received signal for producing an interference-cancelled signal. Alternatively, analogous steps may be applied at high-rate to analyze, synthesize, and cancel the effects of low-rate interference in a multi-rate signal.
Abstract:
The technology comprises method(s) and apparatus for operating a telecommunications system. In its basic form the method comprises providing plural channelization codes for potential use by an uplink receiver; using unused channelization codes of the plural codes to generate an estimate of an impairment covariance matrix; and using the estimate of the impairment covariance matrix to form a processing parameter. For example, the processing parameter can be one or more weight values which, in turn, are can be used for generating a combined output signal.
Abstract:
The teachings herein disclose methods and apparatus that simplify impairment correlation estimation for received signal processing, based on determining, for any given processing interval, which impairment contributors should be considered in the estimation of overall received signal impairment correlations. These simplifications reduce computational processing requirements, allowing reduced circuit complexity and/or reduced operating power, and improve receiver performance. A corresponding transmitter and transmission method include transmitting multiple information streams to targeted receivers according to ongoing scheduling, and controlling the ongoing scheduling to reduce the number of impairment contributors considered in impairment correlation estimation at the targeted receivers. In one embodiment, a receiver identifies which impairment contributors to consider based on receiving control information. In another embodiment, the receiver identifies the impairment contributors to consider based on background processing, e.g., background determination of parametric model fitting parameters for a plurality of impairment contributors, and observing those model fitting parameters over time.
Abstract:
A method of determining at least one channel for channel response in a wireless communication system is disclosed. More specifically, the method comprises receiving a plurality of signals from a transmitting end, wherein the signals comprise a plurality of pilot symbols and a plurality of data symbols, determining weight value of each pilot symbol, assigning the determined each weight value to each pilot symbol, and demodulating each data symbol by using respective information of the weight value corresponding to each pilot symbol.
Abstract:
Methods and apparatus are disclosed for calculating a channel response for use in received signal processing. In an exemplary embodiment, a method comprises calculating a channel response correlation matrix based on measured channel responses derived from pilot symbols in a received signal and forming (360) a traffic data correlation matrix based on measurements of traffic symbols in the received signal. The traffic data correlation matrix, the channel response correlation matrix, and the measured channel responses are used in an minimum mean-squared error (MMSE) estimation process to calculate (370) the channel response estimates. In one or more embodiments, the calculated channel response estimates comprise estimates of net channel response corresponding to signal processing delays in a G- RAKE receiver. An exemplary receiver circuit comprises a baseband processor (16) configured to calculate channel response estimates according to one or more of the disclosed methods.