Abstract:
Disclosed are a system, apparatus, and method for rolling shutter compensation. An image having a plurality of scanlines captured at different times may be received from a rolling shutter camera where each scanline includes a plurality of 2D pixels, and where each scanline has an associated camera pose. One or more 2D pixels in a first scanline of the received image to 3D coordinates may be unprojected and the 3D coordinates may be transformed from the first scanline to a reference pose. The transformed 3D coordinates may be reprojected, and in response to the reprojecting, reference timeframe corrected 2D coordinates for the one or more 2D pixels in the first scanline may be provided.
Abstract:
Die Erfindung betrifft ein Verfahren zur Steuerung einer Videobildverarbeitung in einem Video-Endoskopiesystem (10) mit einem Videoendoskop (20), einer, insbesondere in ihrer Helligkeit steuerbaren, Lichtquelle und einem Videobildaufnehmer, in dem auf Videosignale des Videobildaufnehmers eine automatische Verstärkungssteuerung (AGC) und/oder eine Rauschunterdrückung (NR) und/oder eine Bildverbesserung (IE), insbesondere in Form einer Strukturverstärkung (SE) und/oder einer Kontrastverstärkung (CE), angewendet wird oder werden. Die Erfindung betrifft weiter eine Bildverarbeitungssteuerungssoftware mit Programmcodemitteln und ein Video-Endoskopiesystem (10). Bei dem erfindungsgemäßen Verfahren werden ein Aktivierungsgrad der Rauschunterdrückung (NR) und ein Aktivierungsgrad der Bildverbesserung (IE), insbesondere ein Aktivierungsgrad der Strukturverstärkung (SE) und/oder ein Aktivierungsgrad der Kontrastverstärkung (CE), in Abhängigkeit von einer aktuellen Bildhelligkeit und/oder von einem aktuellen Verstärkungswert der automatischen Verstärkungssteuerung (AGC) und/oder von einem aktuellen Betrachtungsabstandsmaß automatisch angepasst.
Abstract:
Methods and digital imaging devices disclosed herein are adapted to capture images of a specimen in a chemical reaction using a series of short exposures of light emissions from the specimen over a period of time. The series of short exposures is captured using an array of pixels of an image sensor in the digital imaging device that are configured for performing continuous non-destructive read operations to read out a set of non-destructive read images of the specimen from the pixel array. In one embodiment, images are captured by delaying the read out until at or near the end of the chemical reaction to reduce read noise in the images. The signals read out from the image sensor can be continuously monitored and the capturing of images can be discontinued either automatically or based on a command from a user. The captured images can then be displayed in a graphical display.
Abstract:
A smartphone may be freely moved in three dimensions as it captures a stream of images of an object. Multiple image frames may be captured in different orientations and distances from the object and combined into a composite image representing an image of the object. The image frames may be formed into the composite image based on representing features of each image frame as a set of points in a three dimensional point cloud. Inconsistencies between the image frames may be adjusted when projecting respective points in the point cloud into the composite image. Quality of the image frames may be improved by processing the image frames to correct errors. Reflections and shadows may be detected and removed. Further, optical character recognition may be applied. As the scan progresses, a direction for capturing subsequent image frames is provided to a user as a real-time feedback.
Abstract:
Techniques for processing imaging data contaminated by sensor-dependent noise. An imaging method is described. In the imaging method, imaging data corresponding to an imaged region and acquired by at least first and second sensor elements is obtained. A parameterized model is fitted to the imaging data. The parameterized model includes a first sensor-dependent model of noise generated by the first sensor element in a first portion of the imaging data acquired by the first sensor element, and a second sensor-dependent model of noise generated by a second sensor element in a second portion of the imaging data acquired by the second sensor element. The first sensor-dependent noise model differs, at least in part, from the second sensor-dependent noise model.
Abstract:
An image processor includes a first image creator which creates first noise-processed image data by performing noise reduction processing on data on one image acquired by an imaging device, a second image creator which creates second noise-processed image data by performing noise reduction processing corresponding to a false color generated in the first noise-processed image data, and an image synthesizer which performs false color reduction by synthesizing the first noise-processed image data and the second noise-processed image data.
Abstract:
Disclosed are a camera, an image sensor thereof, and a driving method thereof. An image sensor converts an incident light into an electrical image signal. The image sensor outputs the converted electrical image signal by removing noise from the electrical image signal. An image processing unit processes the output image signal to generate screen image data. The image sensor effectively removes noise, thereby improving the optical precision of the camera.