Abstract:
Subfluorinated carbonaceous materials obtained through direct fluorination of graphite or coke particles are provided. One set of subfluorinated carbonaceous materials has an average chemical composition CF x in which 0.63
Abstract:
The invention provides an electrochemical cell having a first electrode having an electrode active material containing at least one electrode active material charge-carrier, a second electrode, and an electrolyte containing at least one electrolyte charge-carrier. In the electrochemical cell's nascent state, the at least one electrolyte charge carrier differs from the at least one electrode active material charge-carrier.
Abstract:
Твердотельный химический источник тока и способ повышения разрядной мощности. Использование: электротехника, а именно устройство первичных и вторичных твердотельных химических источников тока на основе твердых ионных проводников с повышенной разрядной мощностью и способ повышения разрядной мощности. Сущность изобретения: устройство твердотельного химического источника тока, состоящего из корпуса с токовыводами, в котором размещены и подсоединены к токовыводам твердотельные гальванические элементы, выполненные на основе твердых ионных проводников и совмещающих функцию нагревательных элементов; внутри корпуса или/и вне корпуса выполнена тепловая защита, снижающая тепловые потери нагретых гальванических элементов. Способ повышения разрядной мощности твердотельного химического источника тока путем их нагрева, используя тепло, образующееся при пропускании по гальваническим элементам электрического тока и сохранения нагретого состояния гальванических элементов в процессе разряда. Технический результат: твердотельный химический источник тока с высокой разрядной мощностью; низким саморазрядом (на уровне 1-3% в год);длительным временем сохранности электрической энергии; повышение энергетических характеристик до 600 Вт*час/дм3 и выше.
Abstract:
The inventive electrochemical system comprises at least one substrate, at least one electroconductive layer, at least one electrochemically active layer for reversibly inserting ions, in particular cations of H + , Li + , Na + , Ag + -type or OH anions and at least one electrolyte functionality layer, wherein the electrolyte comprises at least one substentially mineral layer which is embodied in a non-oxidised form and whose ionic conductivity is generated or amplified by incorporating nitrogenous compound(s), in particular nitrided, optionally hydrogenated or fluorinated.
Abstract:
The invention relates to an electrochemical energy source comprising at least one assembly of: a first electrode, a second electrode, and an intermediate solid-state electrolyte separating said first electrode and said second electrode. The invention also relates to an electronic module provided with such an electrochemical energy source. The invention further relates to an electronic device provided with such an electrochemical energy source. Moreover, the invention relates to a method of manufacturing such an electrochemical energy source.
Abstract:
Voltage delay in an active metal anode/liquid cathode battery cell can be significantly reduced or completely alleviated by coating the active metal anode (e.g., Li) surface with a thin layer of an inorganic compound with Li-ion conductivity using chemical treatment of Li surface. Particularly, preferred examples of such compounds include lithium phosphate, lithium metaphosphate, and/or their mixtures or solid solutions with lithium sulphate. These compounds can be formed on the Li surface by treatment with diluted solutions of the following individual acids: H3PO4, HPO3 and H2SO4, their acidic salts, or their binary or ternary mixtures in a dry organic solvent compatible with Li, for instance in 1,2-DME; by various deposition techniques. Such chemical protection of the Li or other active metal electrode significantly reduces the voltage delay due to protected anode's improved stability toward the electrolyte.
Abstract translation:通过使用Li表面的化学处理,用具有Li离子传导性的无机化合物的薄层涂覆活性金属阳极(例如Li)表面,可以显着降低或完全减轻活性金属阳极/液体阴极电池单元中的电压延迟 。 特别地,这些化合物的优选实例包括磷酸锂,偏磷酸锂和/或其与硫酸锂的混合物或固溶体。 这些化合物可以在Li表面上通过用与Li相容的干燥有机溶剂中的以下各种酸:H 3 PO 4,HPO 3和H 2 SO 4,它们的酸性盐或其二元或三元混合物的稀释溶液,例如1, 2-DME; 通过各种沉积技术。 Li或其他活性金属电极的这种化学保护显着地降低了由于被保护的阳极提高了对电解质的稳定性的电压延迟。
Abstract:
A polymer based electrolyte complex being configured to provide ion transport, said complex comprising: a plurality of ion conducting polymers, each polymer of said plurality of polymers comprising an amphiphilic repeating unit, said polymers being arranged as a lattice of ionophobic repeating unit regions and ionophilic repeating unit channels, said channels being configured to provide ion transport; a first ionic bridge polymer positioned substantially between said lattice, said ionic bridge polymer being configured to allow ion transport between said ionophilic repeating unit channels of said lattice; said complex further comprising and being characterised by: a second ionic bridge polymer positioned substantially between said lattice, said second ionic bridge polymer being configured to allow ion transport between said ionophilic repeating unit channels of said lattice.
Abstract:
The invention provides a new route for the synthesis of carbon-coated powders having the olivine or NASICON structure, which form promising classes of active products for the manufacture of rechargeable lithium batteries. Carbon-coating of the powder particles is necessary to achieve good performances because of the rather poor electronic conductivity of said structures. For the preparation of coated LiFePO4, sources of Li, Fe and phosphate are dissolved in an aqueous solution together with a polycarboxylic acid and a polyhydric alcohol. Upon water evaporation, polyesterification occurs while a mixed precipitate is formed containing Li, Fe and phosphate. The resin-encapsulated mixture is then heat treated at 700 °C in a reducing atmosphere. This results in the production of a fine powder consisting of an olivine LiFePO4 phase, coated with conductive carbon. When this powder is used as active material in a lithium insertion-type electrode, fast charge and discharge rates are obtained at room temperature and an excellent capacity retention is observed.
Abstract:
A polymer electrolyte being configured to provide ion transport, said polymer electrolyte comprising: a main-chain first repeating unit configured to provide a primary ion coordinating site, a plurality of main-chain repeating units being arranged as a substantially helical ion coordinating channel; said polymer electrolyte further comprising and being characterised by: a main-chain second repeating unit being interdispersed between said main-chain first repeating unit, said second repeating unit being configured to provide a secondary ion coordinating site within said coordinating channel, said secondary ion coordinating site being less coordinating then said primary ion coordinating site; wherein said polymer electrolyte is configured to provide ion transport within said coordinating channel involving ion transport between said primary ion coordinating site and said secondary ion coordinating site.