Abstract:
Known is a two stage high frequency amplifier preceded by a large amplification gain stage providing a fixed swing signal for the two stage amplifier. Particularly in portable devices such as pagers, and mobile or cordless phones, such a receiver structure consumes much power. An amplifier structure is proposed with a cascade of at least four amplifier stages, alternately resistive feedback amplifier stages and non-resistive amplifier stages. Herewith, a dramatic improvement of the gain-bandwidth product is achieved, for the same static power consumption. The amplifier can be used in a PLL of a synthesizer circuit for a pager, cellular or cordless phone, or any other suitable communcation device.
Abstract:
An amplifier comprising an amplifier stage having an input terminal (1) for receiving an input signal; an output terminal (2) for supplying an output signal; an amplifier transistor (4); and a load (5). The load (5) comprises a first (T1) and a second (T2) field effect transistor. The current-voltage characteristic of the load (5) is similar to the diode characteristic of a conventional load formed by means of a diode-connected field effect transistor. The threshold voltage of the load (5) comprising the first (T1) and the second (T2) field effect transistor is much smaller than the threshold voltage of a conventional diode, which results in an improved output voltage swing of the amplifier stage.
Abstract:
A high frequency amplifier arrangement using hybrid nested Miller compensation (HNMC) as a means to frequency compensate amplifiers. The arrangement comprises four amplifier stages, or any other even number higher than four. Each of the four stages can be inverting or balanced pair stages. The Miller compensation is provided by capacitors connected across the output and input of several of the stages, and with a third capacitor connected across the other stages. The HNMC circuit allows the use of lower supply voltages, consumes less supply power, and avoids the need to drive the output transistor with a differential stage. Other variations employ a multipath input stage, and opamps comprising 6 and 8 stages are also described.