Abstract:
This patent specification relates to apparatus, systems, methods, and related computer program products for providing home security objectives. More particularly, this patent specification relates to a plurality of devices, including intelligent, multi-sensing, network-connected devices, that communicate with each other and/or with a central server or a cloud-computing system to provide any of a variety of useful home security objectives.
Abstract:
According to one embodiment, a hazard detector may include a housing having a back plate and a front casing coupled therewith to define an interior space within which various components are contained. The components may include an alarm device and a hazard sensor that is configured to detect a potentially hazardous condition to trigger the alarm device. A cover plate may be coupled with the housing and may face an occupant of a room in which the hazard detector is positioned. The cover plate may include a relatively large population of relatively small openings that are positioned, configured, and dimensioned so that internal components are substantially hidden from view of the occupant while air is allowed to substantially freely flow through the cover plate. A collective area of the openings may be at least 30% of the total area of the cover plate.
Abstract:
The current application is directed to intelligent controllers that continuously, periodically, or intermittently monitor progress towards one or more control goals under one or more constraints in order to achieve control that satisfies potentially conflicting goals. An intelligent controller may alter aspects of control, dynamically, while the control is being carried out, in order to ensure that goals are obtained and a balance is achieved between potentially conflicting goals. The intelligent controller uses various types of information to determine an initial control strategy as well as to dynamically adjust the control strategy as the control is being carried out.
Abstract:
The current application is directed to intelligent controllers that use sensor output and electronically stored information, including one or more of electronically stored rules, parameters, and instructions, to determine whether or not one or more types of entities are present within an area, volume, or environment monitored by the intelligent controllers. The intelligent controllers select operational modes and modify control schedules with respect to the presence and absence of the one or more entities. The intelligent controllers employ feedback information to continuously adjust the electronically stored parameters and rules in order to minimize the number of incorrect inferences with respect to the presence or absence of the one or more entities and in order to maximize the efficiency by which various types of systems controlled by the intelligent controllers carry out selected operational modes.
Abstract:
This patent specification relates to apparatus, systems, methods, and related computer program products for providing smart home objectives. More particularly, this patent specification relates to a plurality of devices, including intelligent, multi-sensing, network-connected devices, that communicate with each other and/or with a central server or a cloud-computing system to provide any of a variety of useful smart home objectives.
Abstract:
Apparatus, systems, methods, and related computer program products for synchronizing distributed states amongst a plurality of entities and authenticating devices to access information and/or services provided by a remote server. Synchronization techniques include client devices and remote servers storing buckets of information. The client device sends a subscription request to the remote serve identifying a bucket of information and, when that bucket changes, the remote server sends the change to the client device. Authentication techniques include client devices including unique default credentials that, when presented to a remote server, provide limited access to the server. The client device may obtain assigned credentials that, when presented to the remote server, provide less limited access to the server.
Abstract:
Systems and methods are described for interactively, graphically displaying and reporting performance information to a user of an HVAC system controlled by a self-programming network-connected thermostat. The information is made on a remote display device such as a smartphone, tablet computer or other computer, and includes a graphical daily or monthly summary each of several days or months respectively. In response to a user selection of a day, detailed performance information is graphically displayed that can include an indication of HVAC activity on a timeline, the number of hours of HVAC activity, as well as one or more symbols on a timeline indicating setpoint changes, and when a setpoint was changed due to non-occupancy.
Abstract:
A wall-mountable programmable electronic thermostat for controlling an HVAC system is described. The thermostat includes a circular wall-mountable backplate with a central opening to allow for the passage of HVAC wires for electrical connection to the thermostat. The head unit body is also circular and is removeably mountable to the back plate. A plurality of wedge-shaped wiring terminals are mounted on the backplate for making a tool-free connection to HVAC wires. Each wiring terminal has button that a user can depress while a wire is inserted in a wire hole. The terminals are arranged along one or more circular arcs about the central opening of the backplate such that the wire holes face the central opening and the buttons are located close to the outer periphery of the backplate.
Abstract:
A user-friendly, network-connected learning thermostat is described. The thermostat is made up of (1) a wall-mountable backplate that includes a low-power consuming microcontroller used for activities such as polling sensors and switching on and off the HVAC functions, and (2) separable head unit that includes a higher-power consuming microprocessor, color LCD backlit display, user input devices, and wireless communications modules. The thermostat also includes a rechargeable battery and power-stealing circuitry adapted to harvest power from HVAC triggering circuits. By maintaining the microprocessor in a sleep state often compared to the lower-power microcontroller, high-power consuming activities, such as learning computations, wireless network communications and interfacing with a user, can be temporarily performed by the microprocessor even though the activities use energy at a greater rate than is available from the power stealing circuitry.
Abstract:
In a multi-sensing, wirelessly communicating learning thermostat that uses power-harvesting to charge an internal battery, methods are disclosed for ensuring that the battery does not become depleted or damaged while at the same time ensuring selected levels of thermostat functionality. Battery charge status is monitored to determine whether the present rate of power usage needs to be stemmed. If the present rate of power usage needs to be stemmed, then a progression of performance levels and/or functionalities are scaled back according to a predetermined progressive power conservation algorithm. In a less preferred embodiment, there is a simple progressive shutdown of functionalities turned off in sequence until the desired amount of discharge stemming is reached. Battery charge preservation measures are also described for cases when an interruption of external supply power used to recharge the battery is detected.