Abstract:
Système (10) de traitement de l'air pour un bâtiment ou navire, comportant: - Au moins une unité centralisée (11) de traitement de l'air, agencée pour délivrer un air purifié dont la composition présente des caractéristiques prédéfinies, - au moins une unité de post-traitement (12), alimentée en air prétraité délivré par l'unité centralisée (11) et adaptée à appliquer un post-traitement autre qu'un seul traitement thermique ou d'humidification, visant à modifier la composition de cet air de façon à obtenir une qualité d'air prédéfinie.
Abstract:
An electrode humidifier device having a cartridge and a reconfigurable steam nozzle, connected to the cartridge that may be changeable between a direct and a remote mounting. Fill and drain valves on a manifold may be operated to add or drain water, respectively, in the cartridge. A sensor may indicate a water level in the cartridge. A controller may be connected to the sensor, and the fill and drain valves. A steam output capacity of the cartridge may be maintained at a predetermined magnitude by controlling the level of water with a controller. The cartridge may have one or more handles for easily inserting or removing the cartridge in a housing. The manifold may be installed in the drain pan for easier cartridge replacement. The humidifier device may be directly mounted on an air duct of a heating system or can be installed remotely.
Abstract:
An air conditioner and a method of controlling the same are disclosed. The air conditioner includes a controller configured to determine a target evaporation pressure based on information sensed by an outdoor temperature sensor. The controller determines whether the determined target evaporation pressure is changed, based on a difference between a value sensed by an indoor temperature sensor and a set temperature of an indoor space and a value sensed by an indoor humidity sensor.
Abstract:
A thermostat includes a housing having a base, a display mount cantilevered from the base, and a case defining an interior volume extending between a front surface and a rear surface, a touch-sensitive display configured to display visual media and receive user inputs, wherein the touch-sensitive display is attached to the display mount, processing electronics on a circuit board positioned at least partially within the interior volume of the case, wherein the processing electronics are configured to operate the touch-sensitive display, and a mounting bracket configured to attach to a mounting location, wherein the mounting bracket includes a frame defining an aperture and the case extends through the aperture so that the frame is located between the front and rear surfaces of the case.
Abstract:
A thermostat includes a housing, a touch-sensitive display configured to display visual media and receive user inputs, and processing electronics configured to operate the touch-sensitive display. The housing includes a base and a display mount. The base includes a top wall, a bottom wall, a front wall connecting the top wall to the bottom wall, a first side wall connecting the top wall to the bottom wall, and a second side wall connecting the top wall to the bottom wall. The top wall, the bottom wall, the first side wall, and the second side wall define an internal volume. The display mount is cantilevered upward from the top wall and includes a mounting surface perpendicular to the top wall of the base. The housing is not opaque. The display is attached to the mounting surface and is not opaque. The processing electronics are positioned within the interior volume.