Abstract:
An electronic device may include a network interface that may enable the electronic device to wirelessly couple the electronic device to other electronic devices. The electronic device may also include a processor that may determine at least one data path to the other electronic devices using a Routing Information Protocol - Next Generation (RIPng) routing mechanism. After identifying at least one data path to the other electronic devices, the processor may determine whether the identified data path(s) is secure using a Datagram Transport Layer Security (DTLS) protocol. If the identified data path(s) is determined to be secure, the processor may send Internet Protocol version 6 (IPv6) data packets to the other electronic devices via the secure data path(s).
Abstract:
This patent specification relates to apparatus, systems, methods, and related computer program products for providing home security objectives. More particularly, this patent specification relates to a plurality of devices, including intelligent, multi-sensing, network-connected devices, that communicate with each other and/or with a central server or a cloud-computing system to provide any of a variety of useful home security objectives.
Abstract:
In a multi-sensing, wirelessly communicating learning thermostat that uses power-harvesting to charge an internal battery, methods are disclosed for ensuring that the battery does not become depleted or damaged while at the same time ensuring selected levels of thermostat functionality. Battery charge status is monitored to determine whether the present rate of power usage needs to be stemmed. If the present rate of power usage needs to be stemmed, then a progression of performance levels and/or functionalities are scaled back according to a predetermined progressive power conservation algorithm. In a less preferred embodiment, there is a simple progressive shutdown of functionalities turned off in sequence until the desired amount of discharge stemming is reached. Battery charge preservation measures are also described for cases when an interruption of external supply power used to recharge the battery is detected.
Abstract:
Systems and methods are described for controlling fan-only cooling duration following normal air conditioning operation. Following normal AC cooling, economical fan cooling is used. The duration of the fan cooling period is adjusted based on temperature measurements made during the previous cooling cycle that ended with fan cooling. An expected temperature drop to be provided by fan cooling as well as an expected time to achieve that drop is calculated based on prior measurements. The expected values are then used improve fan cooling for subsequent cooling cycles. In some cases, fan cooling is not initiated unless: (1) a time limit has an elapsed, such that sufficient condensation is allowed to form on the evaporator coil during the first phase, and (2) indoor relative humidity is below a predetermined threshold.
Abstract:
The current application is directed to intelligent controllers that continuously, periodically, or intermittently calculate and display the time remaining until a control task is projected to be completed by the intelligent controller. In general, the intelligent controller employs multiple different models for the time behavior of one or more parameters or characteristics within a region or volume affected by one or more devices, systems, or other entities controlled by the intelligent controller. The intelligent controller collects data, over time, from which the models are constructed and uses the models to predict the time remaining until one or more characteristics or parameters of the region or volume reaches one or more specified values as a result of intelligent controller control of one or more devices, systems, or other entities.
Abstract:
An occupancy sensing electronic thermostat is described that includes a thermostat body having a curved exterior front surface, a dot matrix display mounted within the body viewable by a user in front of the front surface, a passive infrared sensor for measuring infrared energy and a shaped Fresnel lens having a smooth outer surface that extends across only a portion of the exterior front surface of the thermostat body. The Fresnel lens is shaped and curved so as to conform to and form a part of the curved exterior front surface of the thermostat body. A second downwardly directed passive infrared sensor can also be provided to aid in the detection of an approaching user who intends to interact with the thermostat.
Abstract:
Provided according to some embodiments is a thermostat is capable of discerning the time-of-day without external input. Should the user fail to set the time, the thermostat uses one or more sensors to determine the time-of-day through a variety of techniques. In one example, a light sensor can monitor natural light to understand the cycle of sun with respect to the installation location. From the cycle of natural light a latitude, time-of-year, time-of-day, etc. can be estimated through processing sensor information over time. Should the thermostat have its time manually set or gathered from the network, it would override the estimated time-of-day. Techniques can be used to filter input from the one or more sensors to avoid confusion from other inputs, for example, man-made lighting.
Abstract:
The current application is related to environmental-conditioning systems controlled by intelligent controllers and, in particular, to an intelligent-thermostat-controlled HVAC system that detects and ameliorates control coupling between intelligent thermostats. Control coupling can lead to inefficient HVAC operation. When control coupling is detected, a settings-adjustment directive is sent to at least one intelligent thermostat to adjust one or more intelligent-thermostat settings, including an HVAC-cycle-initiation delay paramter, swing parameter, and a parameter that indicates whether or not an intelligent thermostat should first obtain confirmation or permission before initiating an HVAC cycle.
Abstract:
The current application is directed to an intelligent-thermostat-controlled environmental-conditioning system in which computational tasks and subcomponents with associated intelligent-thermostat functionalities are distributed to one or more of concealed and visible portions of one or more intelligent thermostats and, in certain implementations, to one or more intermediate boxes. The intelligent thermostats are interconnected to intermediate boxes by wired and/or wireless interfaces and intelligent thermostats intercommunicate with one another by wireless communications. Wireless communications include communications through a local router and an ISP, 3G and 4G wireless communications through a mobile service provider. Components of the intelligent- thermostat-controlled environmental-conditioning system may also be connected by wireless communications to remote computing facilities.
Abstract:
A thermostat and related methods is described for controlling an HVAC system having one or two separate transformers for supplying power to the HVAC system. The thermostat includes isolation circuitry housed within the thermostat to safely connect to the HVAC control wires and power wire(s) whether the HVAC system has one or two separate transformers without the use of removable jumpers or manual rewiring. The thermostat can include a processor that sends DC signals for turning on and turning off each of the HVAC functions, and an isolator adapted to electrically isolate the processor from the control wires and power wire(s). The circuitry can include one or more field effect transistors adapted and arranged so as to open or close an electrical connections between the control and power wires, thereby turning on or off the associated HVAC function.