Abstract:
In EUV lithography apparatus (10), it is proposed, in order to lengthen the lifetime of contamination- sensitive components, to arrange them in a protection module. The protection module comprises a housing (23-29) having at least one opening (37-47), in which at least one component (13a, 13b, 15, 16, 18, 19) is arranged and at which one or more gas feeds (30-36) are provided in order to introduce a gas flow into the housing (23-29), which emerges through the at least one opening (37-47). In order to effectively prevent contaminating substances from penetrating into the protection module, a light source (48-56) is arranged at the at least one opening (37-47), which light source illuminates the opening (37-47) with one or more wavelengths by which the contaminating substances can be dissociated before they penetrate through the opening (37-47).
Abstract:
Electric power is generated by using a generator (38) equipped with: a coil unit (38A) that is arranged on a barrel platform (50) and incorporates coils(39); and a magnet unit (38B) that has a magnet section (44) arranged on a protruding section (33a) of a column (30) separated from the barrel platform (50) in terms of vibration and generates an electromotive force in a non-contact state with the coils (39), and a motor (43) that drives the magnet section, and thus a wiring that supplies electric power to the barrel platform (50) does not have to be used. Accordingly, vibration that has been propagated to the barrel platform through the wiring can be precluded.
Abstract:
A reflection type illumination optical apparatus, which guides an exposure light EL to a reticle surface Ra via a curved mirror 24, a concave mirror 25, etc. includes a vacuum chamber 1 which accommodates the curved mirror 24, the concave mirror 25, etc,; and a subchamber 4D which is arranged in the vacuum chamber 1 and which accommodates the curved mirror 24. The subchamber 4D has openings 4Da, 4Db through which the exposure light EL coming into the curved mirror 24 and the exposure light EL exiting from the curved mirror 24 pass, respectively. Each of the openings 4Da, 4Db is arranged in the vicinity of a position at which the cross-sectional area of the light flux is smallest. It is possible to decrease the amount of adhesion of minute particles such as debris to the reflecting optical element, without unnecessarily enhancing the ability of the vacuum gas discharge mechanism.
Abstract:
A gas flow management system may comprise a first and second enclosing walls at least partially surrounding first and second respective spaces; a system generating plasma in the first space, the plasma emitting extreme ultraviolet light; an elongated body restricting flow from the first space to the second space, the body at least partially surrounding a passageway and having a first open end allowing EUV light to enter the passageway from the first space and a second open end allowing EUV light to exit the passageway into the second space, the body shaped to establish a location having a reduced cross-sectional area relative to the first and second ends; and a flow of gas exiting an aperture, the aperture positioned to introduce gas into the passageway at a position between the first end of the body and the location having a reduced cross-sectional area.
Abstract:
Eine mikrolithographische Projektionsbelichtungsanlage weist ein Projektionsobjektiv (20; 120), das mehrere optische Elemente (56; 156) enthält, sowie ein Gerät (58; 116, 155, 162a, 162b) auf, an dem ein Geräteparameter abruf bar ist. Der Geräteparameter bezieht sich auf eine Umgebungsbedingung oder eine Zustandgröße von mindestens einem der optischen Elemente. Der Geräteparameter kann sich auch auf eine Stellgröße eines Betätigungselements beziehen, durch das die Wirkung wenigstens einer Komponente (116) der Projektionsbelichtungsanlage veränderbar ist. Mit einer Temperiereinrichtung (44; 144) ist die Temperatur einer innerhalb oder außerhalb des Projektionsobjektivs angeordneten und von Projektionslicht (13; 113) durchtretenen Flüssigkeit (38; 138) auf einen SoIlwert einstellbar. Eine Steuerungseinheit (48; 148) bestimmt den Sollwert für die Temperatur der Flüssigkeit in Abhängigkeit von dem Geräteparameter.
Abstract:
An EUV lithographic apparatus includes an EUV radiation source, an optical element (50) and a cleaning device (95) . The cleaning device (95) includes a hydrogen radical source (103) and a flow tube (104) in communication with the hydrogen radical source (103) . The cleaning device (95) is configured to provide a flow of hydrogen radicals (96) and the flow tube (104) is arranged to provide a hydrogen radical flow (96) at a predetermined position within the lithographic apparatus, for example for cleaning a collector mirror (50) .
Abstract:
An optical projection unit comprising a first optical element module and at least one second optical element module is provided. The first optical element module comprises a first housing unit and at least a first optical element, the first optical element being received within the first housing unit and having an optically used first region defining a first optical axis. The at least one second optical element module is located adjacent to the first optical element module and comprises at least one second optical element, the second optical element defining a second optical axis of the optical projection unit. The first housing unit has a central first housing axis and an outer wall extending in a circumferential direction about the first housing axis. The first optical axis is at least one of laterally offset and inclined with respect to the first housing axis. Furthermore, the first housing axis is substantially collinear with the second optical axis.
Abstract:
A projection illumination unit (1) is provided with an illumination device (3), comprising a light source, in particular a UV-light emitting laser, a projection lens (7), a reticle plane in which a reticle (5) is arranged, a wafer plane in which a wafer (2) is arranged and a flushing gas system, for flushing the interior of the projection lens (7) and/or the external regions, in particular, the reticle plane and the wafer plane. At least one device (25,32,33) for the monitoring of at least one flushing gas flow is provided, which interrupts the radiation from the light source to the projection lens (7) when the flushing gas flow rate drops below a given level. The device (25,32,33) for the monitoring of the flushing gas flow is connected to the light source by means of a controller. The controller (27) is provided with a timer arrangement (36).
Abstract:
Mittels eines Gerätes (60) zur Bestimmung von Anteilen einer Substanz in einem Gas oder Gasgemisch werden Messungen an dem Gas oder Gasgemisch zum Spülen einer Linse (10) in einem Projektionsapparat (41) für die Projektion von Strukturen auf ein Substrat (100) durchgeführt. Dabei werden die Resultate einer ersten Messung an dem der Linse (10) zugeführten Gas mit den Resultaten einer Messung des von der Linse (10) abgeführten Gases miteinander verglichen. Handelt es sich insbesondere um eine kontaminierende Substanz, die zu einer Abscheidung auf der Linse (10) unter dem Einfluß hochenergetischer Strahlung durch eine Beleuchtungsquelle (14) führt, so kann aus der Differenz auf nachteilhaft zu der Abscheidung führende photochemische Reaktionen an der Oberfläche der Linse (10) geschlossen werden. Ein Signal wird infolge des Vergleiches generiert, mit dem vorbeugende Maßnahmen gegen eine Degradation der Linse (10) getroffen werden können. Als Meßgeräte (60) können Massenspektrometer, elektrische oder optische Sensoren sowie weitere bekannte Verfahren zur Substanzanalyse eingesetzt werden.
Abstract:
The invention relates to a method for constructing an optical beam guide system in a contamination-free atmosphere and a universal optical module for said construction. The aim of the invention is to prevent contamination of the optical imaging elements during handling, assembly and adjustment. According to the invention, the imaging element is fixated aligned relative to a first reference of a support on said support outside the contamination-free atmosphere of the beam guide system, with its optical axis protected against atmospheric influences. The support, protected against atmospheric influences, is introduced into the contamination-free atmosphere of the beam guide system together with the imaging element and is fastened on the recording element, with the first reference aligned with a second reference of a recording element, thereby aligning the optical axis of the imaging element in the beam guide system. The method and the optical module according to the invention are especially suitable for applications where optical systems have to be positioned in a beam guide system ready for instantaneous use and protected from environmental influences.