Abstract:
A microwave resonant cavity (26) is provided. The microwave resonant cavity (26) includes: a sidewall (42) having a generally cylindrical hollow shape; a gas flow tube (46) disposed inside the sidewall and having a longitudinal axis substantially parallel to a longitudinal axis of the sidewall; a plurality of microwave waveguides (24a - 24c), each microwave waveguide having a longitudinal axis substantially perpendicular to the longitudinal axis of the sidewall and having a distal end secured to the sidewall and aligned with a corresponding one of a plurality of holes formed on the sidewall; a top plate (41) secured to one end of the sidewall; and a sliding short circuit (48) having: a disk (43) slidably mounted between the sidewall and the gas flow tube; and at least one bar (50) disposed inside the sidewall and arranged parallel to the longitudinal axis of the sidewall.
Abstract:
공진 커플러 및 이를 이용한 무선 에너지 전송 시스템이 개시된다. 본 발명의 일 실시예에 따른 무선 에너지 전송 시스템은, 자계를 발생시키는 무선 에너지 송신 장치 및 상기 무선 에너지 송신 장치로부터 일정 거리 이격되어 형성되고, 상기 무선 에너지 송신 장치가 발생하는 자계를 수신하는 무선 에너지 수신 장치를 포함한다. 이때, 상기 무선 에너지 수신 장치는, 도선이 일정 방향으로 회전하면서 상기 도선 간에 일정 간격을 두고 안쪽으로 감기는 하나 이상의 나선형 구조물을 포함하는 공진 커플러를 포함한다.
Abstract:
The present invention provides a dielectric resonator antenna for 5.8 GHz wireless communications. In one embodiment, the dielectric resonator antenna comprises a duroid substrate made from dielectric material, a microstrip line embedded in the substrate with slots, where the microstrip line is made from electrically conductive material, a SMA connector electrically coupled with one end of the microstrip line, and a plurality of dielectric resonators coupled with the microstrip line via the slots, wherein the microstrip line is configured in such a way that it goes through all the surface of the dielectric substrate so that the plurality of dielectric resonators form a condensed array format on the surface of the dielectric substrate, resulting a miniaturized dielectric resonator antenna. The present invention also provides a process for design and fabrication of the dielectric resonator antenna.
Abstract:
The present invention relates to a resonator device having a stacked arrangement of laminated layers including a plurality of dielectric layers (3a, 3b, 3c), and at least one resonator (2) comprising a short-circuit electrode (4, 4'), a first capacitor electrode (5') and a second capacitor electrode (7). Each electrode (4, 4', 5', 7) comprises at least a portion (4', 5', 7) of a layer (4, 5, 7) of electrically conductive material provided on a surface of one of the dielectric layers (3a, 3b, 3c). The second capacitor electrode (7) is disposed spaced, in the stacking direction, from the short-circuit electrode (4, 4') and the first capacitor electrode (5'). The short-circuit electrode (4, 4') and the second capacitor electrode (7) are electrically interconnected by means of a first electrical connection comprising at least one via hole (8, 8a, 8b) penetrating one or more of the dielectric layers (3a, 3b, 3c).
Abstract:
A wireless powering and charging system is described. The antennas can be high q loop antennas. The antennas can use coupling between a first part and a second part.
Abstract:
A composite structure for an electronic circuit, a method of fabricating a composite structure for an electronic circuit, and a method of noise suppression utilising a composite structure for an electronic circuit. The composite structure comprises a power plane; a ground plane; an EBG structure including one or more first EBG planes each electrically connected via one or more stubs to one of the power or ground planes; and one or more magnetic dielectric layers formed between the said one of the power or ground planes and the first EBG planes for selective inductive loading of the EBG structure.
Abstract:
A device includes at least one ultra-small resonant structure; and shielding constructed and adapted to shield at least a portion of said ultra-small resonant structure with a high-permeability magnetic material. The magnetic material is formed from a substance selected from a non-conductive magnetic oxide such as a ferrite; a cobaltite, a chromite, and a manganite. The magnetic material may be mumetal, permalloy, Hipernom, HyMu-80, supermalloy, supermumetal, nilomag, sanbold, Mo-Permalloy, Ultraperm, or M-1040.
Abstract:
A voltage tunable resonator is provided, including a dielectric base made of a dielectric material having at least one of a voltage dependent dielectric constant and piezoelectric characteristics. A metal contact having a predetermined area is provided on an outer surface of the dielectric base at a predetermined location to provide a predetermined loaded Q for the resonator, and a metal ground coating is provided on the remaining exposed surfaces of the dielectric base, and an isolation region having a sufficient area to prevent significant coupling between the metal contact and the metal ground coating. A control voltage applied between the metal contact and the metal ground coating provides at least one of (i) a variable electric field to control the dielectric constant and a resonant frequency of the resonator and (ii)a piezoelectric response causing a dimensional change in the resonator to control the resonant frequency of the resonator.
Abstract:
Inhalt der Erfindung ist die Aufbauform von Resonatoren die mittels dem Gleich- und dem Gegentakt-mode betrieben werden. Es werden sowohl Transmissions- wie auch Reflexionsresonatoren, die entweder auf Serienresonanzkreisen oder auf Parallelresonanzkreisen beruhen, beschrieben. Diese Dual-Mode-Resonatoren lassen sich mit jedem bekannten Resonator für TEM- und Quasi-TEM-Moden her stellen. Beispiele für diese bekannten Resonatoren sind Quarze, dielektrische Resonatoren, LC- Schwingkreise, SAW- und BAW-Resonatoren, Koaxialleitungsresonatoren u.v.m.. Durch den Dual-Mode-Betrieb biete n die Resonatoren eine Güte, die um Faktor 2 verbessert gegenüber der im klassi schen Betrieb ist. Dieses wirkt sich beispielsweise im Einsatz bei Oszillatoren darin aus, dass das Phasenrauschen um 6dB breitbandig verringert wird. Bei Taktoszillatoren läuft sich dadurch das Jittern um eine Größenordnung verringern. Filter, die auf Resonatoren basieren, weisen ebenfalls um rund 30% weniger Transmissionsverluste auf. Der notwendige Schaltungsaufwand ist gegenüber dem klassischen Einsatz von Resonatoren derartig gering, dass zu erwarten ist, dass dieses neue Konzept auf Grund der verbesserten elektrischen Eigenschaften in vielen neuen Produkten eingesetzt wird.