Abstract:
An outdoor lighting system and operating methods are presented in which Power- Line-Communication (PLC)-enabled outdoor lighting fixtures form an outdoor lighting network and a lighting control system obtains data from PLC-enabled utility meters by communications through a general purpose network and the outdoor lighting network.
Abstract:
A system having an alternating current (AC) driven LED unit (16), an AC voltage regulator (14), and a controller (13) is provided. The AC driven LED unit includes a first LED (162) and a second LED (164) coupled in reverse parallel. The AC voltage regulator is operable to receive AC voltage originating from an AC voltage source (12), regulate the AC voltage according to control signals (136) from the controller, and apply regulated AC voltage to the AC driven LED unit, so as to enable the first LED and the second LED to emit light according to the regulated AC voltage. In addition, a method is provided for driving the LED by regulating the AC voltage. By regulating the AC voltage using the AC voltage regulator, benefits of restraining voltage fluctuations, reducing THD, improving power factor, providing dimming control, and mitigating flicker phenomenon can be achieved.
Abstract:
A high intensity discharge light source includes an arc tube having a longitudinal axis and discharge chamber formed therein. The light source includes first and second electrodes having inner terminal ends spaced from one another along the longitudinal axis. Each electrode extends at least partially into the discharge chamber. The discharge chamber is deformed so that its internal geometry is substantially rotationally asymmetric about its longitudinal axis, and is substantially mirror-symmetric relative to a plane spanned by the longitudinal axis and by another transverse axis that is perpendicular to the longitudinal axis and is vertical in a horizontal arc tube orientation, as well as substantially mirror-symmetric relative to a central plane perpendicular to the longitudinal axis. In a preferred embodiment of the disclosure the discharge lamp is of a single ended construction and the arc tube of the lamp is of double ended configuration, the discharge lamp having proximal and distal end electric lead wires to connect the arc tube to the lamp base, and the distal end electric lead wire is running below and parallel to the longitudinal discharge chamber axis in a horizontal lamp orientation, and its lateral direction coincides with the lateral direction of the central convex portion of the laterally complex concave-convex-concave deformed surface portion all along the longitudinal axis of the discharge chamber.
Abstract:
The discharge light source includes an arc tube with a discharge chamber having a predetermined location for a metal halide dose or salt pool that minimizes the impact on the light emitted from the light source. The discharge chamber is preferably asymmetric about a second axis that is perpendicular to a longitudinal axis. In one embodiment, the discharge chamber preferably includes first and second generally spheroidal portions of different diameters spaced along the longitudinal axis. The arc tube has different wall thicknesses in yet another arrangement. In a further exemplary embodiment, a portion of a wall that forms the discharge chamber includes a generally concave surface. These features may be used individually or in combination.
Abstract:
A light emitting assembly includes a backplane having a first surface area and an impermeable layer. At least first and second light emitting devices are received on the first surface of the backplane, each light emitting device having a surface area less than the first surface area and electrically connected to an associated external driver. The first and second light emitting devices are positioned on the backplane in contiguous relation without a hermetic edge seal therebetween to maximize the filling factor, and an encapsulating material is received over and seals the first and second light emitting devices.
Abstract:
A device including a layer comprising a light emissive area and a light non-emissive area. A light-extracting feature is disposed over the light non-emissive area. The light-extracting features can include surface aberrations and reflective index matching elements. A method of forming the device is also provided.
Abstract:
A luminaire, such as a lamp assembly or a floor lamp, umbrella, or planar or sheet-like like light emitting surface includes a conforming mechanism for selectively curving the light emitting surface. A convex profile will diffuse light while a concave profile will concentrate light, it being intended that the surface can be conformable up to a five inch (5") radius of curvature in either direction. The light panel portions may be of the same color, or may be different colors that will result in different mixing of the light when made from different colors.
Abstract:
A lamp assembly provides both instant light through use of an incandescent/ halogen lamp source and an energy saving type light provided by a compact fluorescent lamp source. Both light sources are enclosed within a common envelope or outer bulb. The sensor member monitors a temperature of the cathode and mercury reservoir of the compact fluorescent lamp source in order to determine when to terminate power to the incandescent lamp source.
Abstract:
A ballast control unit for controlling at least one light output of at least one dimmable ballast is disclosed, in which the dimmable ballast powers one or more light sources via the light output(s). The ballast control unit includes a wireless interface provisioned to receive messages from a mesh network, and to retransmit the received messages not destined for the ballast control unit. The ballast control unit further includes a control module provisioned to control the dimmable ballast(s) and the light output(s) according to commands in the received messages destined for the ballast control unit, where the commands correspond to the dimmable ballast(s) and/or the light output(s).
Abstract:
In certain embodiments, a system includes a gasification system configured to output grey water. The.system also includes a grey water zero liquid discharge (ZLD) system configured to receive the grey water and to generate a first stream of distillate. The grey water ZLD system comprises an ammonia stripping system. An amount of water into and out of the grey water ZLD system is approximately equal.