Abstract:
An in-line 4D cone beam CT reconstruction algorithm, i.e. one that works in parallel with image acquisition, comprises an imaging system for a object exhibiting internal periodic motion comprising a source of penetrating radiation and a two-dimensional detector for the radiation, the source and the detector being rotateable around an axis lying on the beam path from the source to the detector, a storage means for images obtained from the detector, a control means for initiating rotation of the source and the detector and for obtaining images from the detector at a plurality of rotation angles over time, a processing means for (i) condensing the images in a direction transverse to an axis to produce a one-dimensional image, (ii) collating the one-dimensional images obtained up to that point side-by-side into a two dimensional image, (iii) analysing the two-dimensional image thus obtained to identify periodic patterns, (iv) allocating phase information to the images in the storage means on the basis of that analysis, (v) selecting images in the storage means having like phase information, and (vi) backprojecting the selected images, the control means being adapted to invoke the processing means after a plurality of images have been placed in the storage means, and then place further images in the storage means and further invoke the processing means. Thus, we queue a limited number of projection images such that the phase determination algorithm can look-ahead. At regular intervals, the queue is scanned and those images which have enough look-ahead to obtain phase information are filtered and back-projected. The algorithm thus keeps up with the image acquisition speed and produces a 4D reconstruction within a few seconds of the end of scanning. A local rigid registration algorithm is then used to match the tumor region defined in the mid-ventilation frame of our 4D planning CT with each of the phases of the 4D CBCT. An animation technique provides rapid visual verification; the mean position of the tumor is computed and used for correction, while the amplitude is reviewed to validate the margin.
Abstract:
A treatment planning method comprises the steps of identifying a plurality of treatment locations and an overall dose to be applied to each, for each specific location identifying the global dose applied at that location by doses aimed at different locations, as a proportion of the dose applied at the respective different location, constructing a dose factor matrix containing for each location, the global doses arising from the dose applied at each other location, inverting the dose factor matrix and multiplying it with a prescription matrix containing the overall doses to be applied to each location, thereby to obtain a resultant matrix containing a local dose for each location. This provides a mathematically straightforward method of deriving the necessary doses to be applied to each target so that, including the global doses delivered while irradiating a different target, each target receives the correct total dose. Some locations can be omitted from the treatment planning method, for example if they are located so far from the other locations that they will not have a significant interaction with them. A corresponding treatment planning apparatus is also described.
Abstract:
Methods for the registration of images typically assume that there are only two images, an assumption that is not always valid. By using the remaining images to obtain a choice of paths between two selected images, the transformation between the two can be determined with greater accuracy by averaging those paths. When averaging the paths, greater weight can be given to paths whose accuracy is known or reasonably believed to be greatest. Iteration of the process may be possible, where the available computation power is available.
Abstract:
The present invention discloses a joint structure between the wall elements of a light-weight magnetically shielded room. In the joint structure, the end of the aluminium plate of the element is stepped and its surface roughened. In addition to this, the aluminium plate is coated, for example, with tin to improve the electrical contact. The joint includes µ metal plates which are used to make a magnetic contact between the µ metal plates of the elements. The compression force achieved by means of bolts is transmitted to the joint by means of an aluminium moulding. The non-continuous compression force is balanced over the entire joint area by using presser rubbers. The joint structure is protected by means of supporting profiles which are used to electrically couple the thinner aluminium plate of the sandwich type wall element to the thinner aluminium plate of an adjacent element. The thinner aluminium plate and the supporting profile can also be coated, for example, with tin to improve the contact.
Abstract:
The present invention relates to a device for fixation to a head of a patient during neurological diagnosis, therapy or surgery, in particular during MRI diagnosis. The device comprises at lest one fixation pin for fixation to the head, a sleeve member (5) having n internal threaded through bore to t lest partly receive and hold said fixation pin, and pin support member for supporting said fixation pin and sleeve member. The sleeve member is exchangeable and provided in t lest two different lengths in order to allow adaptation of the sleeve member to the size of the head to improve the fixation of the head and avoid the fixation pin to protrude beyond the outer boundary of the pin support member. The invention also relates to a method for fixation of a head.
Abstract:
A radiation therapy/surgery device optimised to meet the needs of the Neurosurgeon is provided, i.e. one for the treatment of tumours in the brain. It combines the qualities of a good penumbra and accuracy, simple prescription and operation, together with high reliability and minimal technical support. The device comprises a rotateable support, on which is provided a mount extending from the support out of the plane of the circle, and a radiation source attached to the mount via a pivot, the pivot having an axis which passes through the axis of rotation of the support, the radiation source being aligned so as to produce a beam which passes through the co-incidence of the rotation axis and the pivot. It will generally be easier to engineer the apparatus if the rotateable support is planar, and more convenient if the rotateable support is disposed in an upright position. The rotation of the rotateable support will be eased if this part of the apparatus is circular. A particularly preferred orientation is one in which the radiation source is spaced from the rotateable support, to allow it to pivot without fouling the latter. It is thus preferred that the mount extends transverse to the support. In this way, the pivot axis is spaced from the rotateable support providing free space in which the radiation source can pivot. Another way of expressing this preference is to state that the pivot axis is located out of the plane of the rotateable support. To simplify the geometry of the device and the associated arithmetic, it is preferred both that the pivot axis is substantially perpendicular to the rotation axis, and that the beam direction is perpendicular to the pivot axis. It is preferred that the radiation source is a linear accelerator. The output of the radiation source is preferably collimated to conform to the shape of the area to be treated.
Abstract:
A device for recording in at least two planes radiation from a radiotherapy apparatus in a limited area at which the radiation is directed. The device comprises a dimensionally stable frame (1) which is adapted to be arranged in a defined position relative to said radiotherapy apparatus, an attachment (4) on the frame (1) for a recording means, and a recording means (5) which extends from the attachment (4) at an acute angle to the frame (1) along an axis of rotation (6) and to the center of the frame (1). The recording means (5) is adapted to assume at least two defined rotational positions on said axis (6). In addition, the recording means (5) exhibits a surface (14) for supporting a radiation recording unit (13), which surface (14) is located in a plane (9) that forms an acute angle with the axis of rotation (6), the plane (9) of the surface (14) when rotating the recording means (5) being adapted to turn on a single pivot point (7) which is fixed relative to the frame (1).
Abstract:
Systems and methods are disclosed for simulating dose deposition. The systems and methods perform operations comprising: receiving a set of training data representing phase space of a radiotherapy treatment device comprising propagation and scattering of particles inside the radiotherapy treatment device; training a generative machine learning model based on the set of training data to generate one or more samples of the phase space of the radiotherapy treatment device; and simulating dose deposition at a particular region of interest based on the one or more samples of the phase space generated by the generative machine learning model.
Abstract:
Techniques for generating a radiotherapy treatment plan parameter are provided. The techniques include receiving radiotherapy treatment plan information; processing the radiotherapy treatment plan information to estimate one or more radiotherapy treatment plan parameters based on a process that depends on the output of a subprocess that estimates a derivative of a dose calculation; and generating a radiotherapy treatment plan using the estimated one or more radiotherapy treatment plan parameters.
Abstract:
Techniques for adjusting radiotherapy treatment for a patient in real time are provided. The techniques include retrieving a reference plan that includes three- dimensional (3D) volume representation of information for the patient and a plurality of radiotherapy beam delivery segments; identifying a first portion of the 3D volume representation of information for a first beam delivery segment of the plurality of radiotherapy beam delivery segments that includes a volumetric portion of a target irradiated by the first beam delivery segment; accessing a deformation model representing patient deformation during a radiotherapy treatment fraction; deforming the first portion of the 3D volume representation of information based on the deformation model; and updating one or more parameters of a radiotherapy treatment device based on the deformed first portion of the 3D volume representation of information.