Abstract:
Systems and methods are described for securely and efficiently processing electronic content. In one embodiment, a first application running on a first computing system establishes a secure channel with a second computing system, the secure channel being secured by one or more cryptographic session keys. The first application obtains a license from the second computing system via the secure channel, the license being encrypted using at least one of the one or more cryptographic session keys, the license comprising a content decryption key, the content decryption key being further encrypted using at least one of the one or more cryptographic session keys or one or more keys derived therefrom. The first application invokes a second application to decrypt the license using at least one of the one or more cryptographic session keys, and further invokes the second application to decrypt the content decryption key using at least one of the one or more cryptographic session keys or one or more keys derived therefrom, and to decrypt a piece of content using the content decryption key. The first application then provides access to the decrypted piece of content in accordance with the license.
Abstract:
Systems, methods, and devices for communicating MPDUs having a plurality of types are described herein. One aspect of the disclosure provides a method of processing a media access control (MAC) protocol data unit (MPDU) in a wireless system. The method includes receiving the MAC protocol data unit, the MAC protocol data unit comprising an indication of a communication in accordance with a protocol version. The method further includes selecting a replay counter from one of a first and second sets of replay counters based at least in part on the indication. The method further includes processing the received MAC protocol data unit in accordance with the selected replay counter.
Abstract:
Systems, methods, and devices for communicating data in a wireless communications network are described herein. In some aspects, an access point transmits a beacon to a station. The beacon comprises a Wi-Fi Protected Access II pre-sharked key (WPA2-PSK) authentication type. The access point further receives an authentication request from the station. The access point further transmits an authentication response to the station. The authentication response comprises the WPA2-PSK authentication type. The access point further retrieves a PSK and generates a PMK based on the PSK. The access point further receives an association request from the station after generation of the PMK. The association request comprises a key confirmation derived from the PSK. The access point further transmits an association response to the station in response to reception of the association request. The association response comprises the key confirmation.
Abstract:
Method, apparatus and system for communicating between a machine to machine, M2M, device 110 and a device management, DM, server 420 over SMS, comprising: obtaining key material, the key material configured to protect data communicated between the M2M device 110 and the DM server 420. Protecting data to be communicated using the key material. Communicating the protected data between the M2M device 110 and the DM server 420 over SMS.
Abstract:
In order to improve security upon distributing a group key, there is provided a gateway (20) to a core network for a group of MTC devices (10_1-10_n) communicating with the core network. The gateway (20) protects confidentiality and integrity of a group key, and distributes the protected group key to each of the MTC devices (10_1-10_n). The protection is performed by using: a key (Kgr) that is preliminarily shared between the gateway (20) and each of the MTC devices (10_1-10_n), and that is used for the gateway (20) to authenticate each of the MTC devices (10_1-10_n) as a member of the group; or a key (K_iwf) that is shared between an MTC-IWF (50) and each of the MTC devices (10_1-10_n), and that is used to derive temporary keys for securely conducting individual communication between the MTC-IWF (50) and each of the MTC devices (10_1-10_n).
Abstract:
Methods and apparatus are provided for securing device-to-device communications. A method can comprise: at an access network apparatus, obtaining from a core network apparatus and storing a first key shared between a first user equipment and the core network apparatus for device-to-device communications of the first user equipment; receiving from a second user equipment, a request for generating a second key for a device-to-device communication between the first user equipment and the second user equipment; in response to the request, generating the second key based on the first key and security parameters; and sending the second key to the second user equipment.
Abstract:
Secure registration of a new application with a server system is provided. An old application has been registered with the system. A first link between the new application and the system establishes a first key and first check data is communicated from the system to the new application and passed to the old application. A second link between the old application and the system establishes a second key based on input of a credential to the old application; the first check data is communicated from the old application to the system. Enciphered second check data is communicated from the system to the old application over the second link and further encrypted by the old application using a third key. This generates doubly-enciphered check data which is passed to the new application and decrypted using the first key and a fourth key, generated at the new application based on the first check data and input of the credential to the new application.
Abstract:
The invention solves the way of authentication of secured data channel between two sides (A, B) when there is at first established a non-authenticated protected data channel (1), with ending (3) of the data channel (1) on the first side (A) and ending (4) of the data channel (1) on the other side (B) and with target application (7) on the first side (A) and target application (8) on the other side (B), while the endings (3) and (4) have a non-authenticated shared secret (5), consequently, on both sides (A, B) of the data channel (1) there are calculated the data derived from non-authenticated shared secret (5), then the data derived from the non-authenticated shared secret (5) are passed via external communication means out of the data channel (1) to two sides (11, 12) of the external authentication system (2), which consequently performs authentication of communicating sides (A, B) including authentication of the data channel (1).