Abstract:
A vertical take-off and/or landing aircraft (1) comprising: a fuselage (2) having a longitudinal axis (d); a pair of semi-wings (3) protruding from the fuselage (2) in a transversal direction with respect to the longitudinal axis (D); a pair of a predetermined breaking areas (11) of the semi-wings (3) defining respective preferred rupture sections (12) at which the respective semi-wings (3) are designed to break, during operation, in a controlled way moving along a preferred collapse trajectory in the event of impact; and at least one fluidic line (13) configured to convey at least one service fluid from and/or towards at least one said semi-wing (3) and crossing at least one of said preferred rupture sections (12); the aircraft (1) comprises a self-sealing coupling (15) movable between a first configuration in which it enables the flow of said service fluid from and/or towards the semi-wing (3), and a second configuration in which it prevents the above-mentioned flow and the spilling of the service fluid from the fluidic line (13); the self-sealing coupling (15) is movable from the first to the second configuration via the movement of the semi-wing (3) along the preferred collapse trajectory.
Abstract:
Unmanned aircraft, comprising a first wing (11) and a second wing (12), wherein at least one of the first and second wings (11, 12) are made with a multiple element configuration comprising a set of wing profiles (21, 22, 23, 24) which are arranged at least partially in a condition of mutual proximity, said set of wing profiles comprising at least a first wing profile (21) and a second wing profile (22 ) which are mutually positioned one after the other and which define a leading edge and a trailing edge, respectively, wherein said first wing (11) and said second wing (12) are spaced with respect to each other; said aircraft further comprising interconnection supports (13, 14) between said first wing (11) and said second wing (12), holding said first and second wing (11, 12) at a given distance, said unmanned aircraft further comprising at least one aerodynamic container (40) positioned between said first wing (11) and said second wing (12), said aerodynamic container (40) comprising an inner compartment and a casing enclosing said inner compartment and being adapted and configured to carry a load and/or a central motor (50c).
Abstract:
The disclosure relates to a vertical take-off and landing, VTOL, flying machine. The machine includes a ducted fan having an intake side and an outlet side, at least two co-axial rotors configured to contra-rotate about a fan axis X when driven in rotation; a primary drive source arranged substantially co-axially with the ducted fan and to the outlet side of the ducted fan; and first and second thrust air ducts configured to split thrust from the ducted fan into a pair of thrust streams and to guide the two respective thrust streams to opposite respective sides of the primary drive source, the ducts being rotatable to direct motion of the machine. A number of configurations of secondary drive sources and alternative thrust sources are provided for improved safety.
Abstract:
An aerial vehicle may include a first wing structure. The aerial vehicle may further include a first propeller and a second propeller disposed along the first wing structure. The aerial vehicle may further include a second wing structure disposed to intersect the first wing structure to form a cross configuration. The aerial vehicle may further include a third propeller and a fourth propeller disposed along the second wing structure. In a hovering orientation of the aerial vehicle, respective propeller rotational axes of the first and second propellers may be angled off-vertical in respective planes which may be perpendicular to a transverse axis of the first wing structure, and respective propeller rotational axes of the third and fourth propellers may be angled off-vertical in respective planes which may be perpendicular to a transverse axis of the second wing structure.
Abstract:
일 실시예에 따른 팬-인-윙 비행체는, 동체; 상기 동체의 양 측으로부터 스팬 방향으로 연장하는 주날개; 상기 주날개의 내부에 회전 가능하게 장착된 회전익; 및 상기 주날개에 개폐 가능하게 설치되고 외부에 대하여 상기 회전익을 개방 또는 폐쇄시키는 개폐부를 포함할 수 있다.
Abstract:
An aircraft includes a wing where a first rotor and a second rotor are coupled to the wing at a fixed position relative to the wing. The aircraft also includes a fuselage and a bearing. The bearing mechanically couples the wing and the fuselage and permits the wing and the fuselage to rotate with respect to each other about an axis of rotation. The bearing permits the fuselage to rotate under the influence of gravity to be in a same orientation relative to ground when the wing is in a first orientation relative to the ground as well as a second orientation relative to the ground.
Abstract:
An unmanned aerial vehicle includes at least one rotor motor configured to drive at least one propeller to rotate; a passenger compartment sized to contain a human or animal passenger; and a hybrid generator system configured to provide power to the at least one rotor motor and to generate lift sufficient to carry the human or animal passenger. The hybrid generator system includes a rechargeable battery configured to provide power to the at least one rotor motor; an engine configured to generate mechanical power; and a generator motor coupled to the engine and configured to generate electrical power from the mechanical power generated by the engine.
Abstract:
This invention presents a three-dimensionally and discreetly scalable, modular and customizable aircraft (V) which is composed of stably flyable plurality of planar unitary systems (S) in which each provides a coordinated thrusting vector in any direction of the three-dimensional space. The invented aircraft (V) includes at least one circumferential frame (1) that surrounds the system (S) in one plane that houses at least one rotatable piece (1a) that allows the system (S) rotate around at least one rotation axis relative to the circumferential frame (1). The invented aircraft (V) includes at least two assembly regions (1b) located on the external surfaces of the circumferential frame (1) which is used to attach at least two adjacent modules (M) by touching each other. The invented aircraft (V) also includes at least two electrical power transmission regions (1c) that are aligned with the corresponding identical region of the next module (M), which allows sharing of the power sources (1d), providing energy to the system (S), among all of the modules (M).
Abstract:
The object of the invention is a vertical take-off and landing aircraft in the manned or unmanned version powered by one or more electric motors which rotate two contra-rotating, fixed-pitch or variable-pitch propellers located at the front. To control the aircraft during vertical and horizontal flights auxiliary horizontal and vertical control and trim surfaces (5) and (7), located in the slipstream of contra-rotating propellers (1) in front of the aircraft's centre of gravity are used, whereas the control and trim surfaces (5) and (7) are suspended in relation to the aircraft on axles (6) and (8) that are located in front of the centre of aerodynamic forces created by them, owing to which the aerodynamic surfaces place themselves in the direction of the flowing control air of the aircraft, while the lift force created by them depends directly on the moments exerted on their axes of rotation (6) and (8), created with the use of linear or angular magneto-dynamic hoists (10) or with the aerodynamic method through auxiliary control tabs (12) installed on the control and trim surfaces (5) and (7).
Abstract:
A camera system and method capture image data with a camera, a data storage device electrically connected to the camera and configured to store the video data and/or a communication device electrically connected to the camera and configured to communicate the image data to a system receiver located remote from the camera. The system receiver may be located onboard a vehicle such that an operator can carry the camera off board the vehicle and communicate the image data back to the vehicle, when performing, for example, work on the vehicle or inspecting the vehicle or the environs of the vehicle.