Abstract:
A multi-port charging unit is capable of charging at least two electric vehicles (EVs) utilizing a power supply configured to provide charging power to one EV. The multi-port charging unit includes a power cable configured to couple to a first EV. The multi-port charging unit also includes a power cable configured to couple to a first electric vehicle (EV) also includes an expansion port configured to couple via a removable conductor to a second EV. The multi-port charging unit also includes a switch configured to selectively couple a power source to the power cable and the expansion port. The multi-port charging unit further includes a processor configured to operate the switch to repeatedly alternate providing a charging power to the first EV and to the second EV.
Abstract:
A microfluidic device, for use in separation systems, includes a substrate having a fluidic channel. One or more heaters made of a thick film material are integrated with the substrate and in thermal communication with the fluidic channel of the substrate. The one or more heaters produce a thermal gradient within the fluidic channel in response to a current flowing through the one or more heaters. A plurality of electrically conductive taps can be in electrically conductive contact with the one or more heaters. The plurality of electrically conductive taps provides an electrically conductive path to the one or more heaters by which an electrical supply can produce the current flowing through the one or more heaters. Alternatively, the thick film material can be ferromagnetic, and the electrical supply can use induction to cause the current to flow through the one or more heaters.
Abstract:
A chromatography system includes a separation column that separates a sample carried by a compressible mobile phase flow into analytes and a splitter in fluidic communication with the separation column to receive and divide the compressible mobile phase flow into first and second mobile phase streams in accordance with a split ratio. A thermally modulated variable restrictor is coupled between the splitter and a detector. The restrictor receives the first mobile phase stream from the splitter and has a temperature element in thermal communication with the first mobile phase stream to exchange heat therewith. A controller, in communication with the restrictor, dynamically adjusts a temperature setting of the temperature element of the restrictor to adjust the heat exchange between the thermally modulated variable restrictor and the first mobile phase stream in order to keep the split ratio constant throughout a chromatographic run.
Abstract:
A data expansion system that provides continuum of discrete wireless small cell coverage areas for mobile terminals includes a set of roadway reflectors (610) configured to provide wireless broadband data services to a mobile terminal (490). Each reflector (100) includes processing circuitry (410) configured to establish communications between the mobile terminal (490) and a backhaul network (480). Each reflector (100) includes a wireless transceiver (420) configured to transmit and receive data. Each reflector (100) includes a power source (440) that converts solar energy into electricity. Each reflector (100) includes a housing (460) configured to contain the processing circuitry, the transceiver, and the power source. The housing (460) has a raised reflective surface.
Abstract:
A server system for distributing information securely includes a network interface for receiving, over a network, an information object accompanied by metadata. A repository stores the information object. Metadata is mapped to electronic addresses of trusted recipients. A processor is configured to generate a link for accessing the information object in the repository, acquire an electronic address of a trusted recipient based on the metadata accompanying the information object, insert the link into an electronic message addressed to the electronic address of the trusted recipient, and send the electronic message with the link to the trusted recipient. The processor is further configured to receive, over a second network, a request for the information object sent from a user device in response to an activation of the link, retrieve the information object from the repository, and transmit the information object to a browser of the user device over the second network.
Abstract:
An infant-nursing platform includes a cushion adapted for supporting a baby while nursing. The cushion has a support surface. Weighing means are disposed within the cushion and operably coupled to the support surface to weigh the baby on the support surface of the cushion. A user interface device is operably coupled to the weighing means to obtain measurement information therefrom. The user interface device and produces an output in response to the measurement information obtained from the weighing means.
Abstract:
An apparatus for use in a liquid chromatography system includes a chromatography port and a tubing assembly having a chromatography tube coupled at one end to the chromatography port. The end of the tube has an end face covered with a corrosion-resistant material, for example, gold. The corrosion-resistant nature of the material protects the end of the tube from corrosion or erosion, which improves the quality and reliability of a seal between the end face of the tube and a sealing surface of the port. Alternatively, or in addition to covering the end face of the tube with the corrosion-resistant material, a gasket covered with or made of the corrosion-resistant material can be disposed between the end face of the tube and the port. This gasket extends the reach of the tube to facilitate bottoming out the tube within the port.
Abstract:
A liquid chromatography system includes a gradient proportioning valve in fluidic communication with sources of solvent. From the solvent sources, the gradient proportioning valve produces a low-pressure gradient stream. A first pump is in fluidic communication with the gradient proportioning valve to receive, pressurize, and move the pressurized low-pressure gradient stream to a flow-combining device. A second pump operates in parallel with the first pump and moves a pressurized solvent stream to the flow-combining device where the pressurized solvent stream combines with the low-pressure gradient stream to produce a high-pressure gradient stream. A second gradient proportioning valve can produce, from a second plurality of sources of solvent, a second low-pressure gradient stream, wherein the solvent stream moved by the second pump to the flow-combining device and combined with the other low-pressure gradient stream comprises the second low-pressure gradient stream.
Abstract:
Mixers in microfluidic separation systems comprise multiple fluidic paths that extend from a distribution well to a mixing well. An incoming flow of solvent composition splits at the distribution well into as many streams as fluidic paths. The streams recombine at the mixing well to produce an output stream. One embodiment has fluidic paths with different dwell volumes that determine a percentage of the incoming flow flowing through each path. These dwell volumes can be targeted to attenuate a known noise characteristic in the incoming compositional flow. Another embodiment of mixer has a contoured surface disposed between the distribution and mixing wells. The paths extend from the distribution well to the mixing well through this contoured surface, each path passing through a different valley defined by opposing upwardly sloping banks. The valleys can have different dwell volumes that determine a percentage of the incoming compositional flow flowing through each valley.
Abstract:
An apparatus for chemical separations includes a microfluidic substrate having an outlet aperture for outputting an eluent of a sample. An emitter assembly includes having a deformable end portion, an inlet near the deformable end portion to receive the sample eluent from the microfluidic substrate, and an electrically conductive outlet portion to emit a spray of the sample eluent. A force-applying unit applies a force to the emitter assembly that urges the deformable end portion into contact with the microfluidic substrate. The deformable end portion is more elastic than the microfluidic substrate so that the contact between the microfluidic substrate and the deformable end portion produces a substantially fluid-tight seal between the outlet aperture of the microfluidic substrate and the inlet of the emitter assembly.