Abstract:
A system and method for collaborative building of a shared self-refining surrogate model for engineering simulations are disclosed. In one embodiment, a method includes running a reduced order engineering simulation model on a complex system, and querying a shared self-refining surrogate model upon receiving a request for a higher order simulation for a reduced order simulated item. The method also includes estimating a required higher order simulation result having a desired confidence interval for the reduced order simulated item, and determining whether the required higher order simulation result having the desired confidence interval is in the shared self-refining surrogate model. If not, then the method includes performing the higher order simulation to obtain the required higher order simulation result, enriching the shared self-refining surrogate model with the obtained higher order simulation result, and sending the obtained higher order simulation result to the reduced order engineering simulation model.
Abstract:
A system and method for generating an equi-time point (ETP) for an emergency landing of an aircraft are disclosed. In one aspect, a method of a flight management system (FMS) of an aircraft for generating an ETP for an emergency landing of the aircraft includes receiving at least two reference points for landing the aircraft upon an occurrence of an emergency. The method also includes determining an equi-distance point (EDP) for the aircraft by locating a first point on the remaining flight path of the aircraft which is equidistant from the at least two reference points. The method further includes generating an ETP for the aircraft by locating a second point on the remaining flight path such that time difference between any two of expected flight times of the aircraft from the second point to the at least two reference points is less than a threshold value.
Abstract:
A system and method for dynamically computing an equi-distance point (EDP) for aircrafts is disclosed. In one embodiment, a method for dynamically computing an EDP for an aircraft includes receiving at least two reference points for landing the aircraft upon an occurrence of an emergency, determining a remaining flight path for the aircraft based on a current location of the aircraft and a flight plan serviced by a flight management system (FMS) of the aircraft, and generating the EDP for the aircraft by locating a point on the remaining flight path which is equidistant from the at least two reference points.
Abstract:
A system and method for maximizing displaying of trajectory elements in an edit area of a navigational display are disclosed. In one embodiment, navigational display parameters are obtained from a cockpit display system. Further, flight plan information is obtained from a flight management system (FMS). Furthermore, a portion of the flight plan information which lies within the edit area of the navigation display is dynamically determined using the navigational display parameters. In addition, a display buffer is dynamically populated with only the determined portion of the flight plan information. Moreover, any needed data that is in the determined portion of the flight plan information is dynamically refreshed in the display buffer. Also, the flight plan information is dynamically displayed on the edit area of the navigation display using the refreshed and populated flight plan information and the needed data.
Abstract:
A system and method for analyzing arrangement of vehicle and building wire harnesses for electromagnetic interference (EMI) are disclosed. In one embodiment, at least design data of a first wire harness and a second wire harness and associated electrical structure of the vehicle or building are received. Further, a plurality of cutting planes are applied to intersect at least the first wire harness and the second wire harness and the associated electrical structure based on the design data. Furthermore, a respective set of cutting points are identified for each of the plurality of cutting planes. The respective set of cutting points includes locations where a respective cutting plane intersects at least the first wire harness and the second wire harness and the associated electrical structure. In addition, a segregation distance is measured between each respective set of cutting points.
Abstract:
A system and method for an adaptable oxygen regulator with an electronic control device is disclosed. In one embodiment, an oxygen regulator system includes an electronic control device which includes a non-volatile memory for storing a first reference point. The electronic control device also includes a pressure sensor configured for generating pressure data of the pressurized aircraft cabin. The electronic control device further includes a logical control unit for generating a control signal by processing the first reference point and the pressure data. Further, the electronic control unit includes a rotary actuator for generating a rotary displacement based on the control signal. Moreover, the oxygen regulator system includes a demand dilution oxygen regulator coupled to the electronic control unit and configured to control the supply of oxygen and the flow of dilution air from the pressurized aircraft cabin based on the control signal.
Abstract:
An aircraft part, such as a cockpit or cabin, comprising a support structure and a robot arm (7). The robot arm has a proximal end (10) attached to the support structure and a distal end adapted to hold a electronic device (8). An actuation system is arranged to drive the robot arm so that the distal end of the robot arm moves relative to the support structure. A memory contains data, and a controller is programmed to drive the actuation system according to the data in the memory in order to move the distal end of the robot arm to a position determined by the data in the memory. The robot arm comprises a "snake-arm" with three or more links connected by a series of two or more joints, each joint connecting together a respective adjacent pair of the links and permitting relative rotation between the adjacent pair of links. The actuation system is arranged to move the distal end of the robot arm by causing a relative rotation between the links about their joints.
Abstract:
System and method of converting geometric entities of 1D elements in a finite element model (FEM) from a source finite element analysis (FEA) tool format to a destination FEA tool format is disclosed. In one embodiment, coordinates of all the geometric entities associated with each 1D element in the FEM are transformed from the source FEA tool format to a global coordinate system. The geometric entities of the 1D elements in the FEM are then converted from the source FEA tool format to the destination FEA tool format using the transformed coordinates of all the geometric entities associated with each 1D element.
Abstract:
A system and method for computing design parameters for a thermally comfortable environment is disclosed. In one embodiment, a surface heat transfer coefficient (hea1) is obtained for each body part of one or more thermal manikins in a uniform thermal environment by performing a 1 D numerical analysis on the uniform thermal environment based on a given set of boundary conditions for the uniform thermal environment. Further, equivalent temperature (teq) limits for each body part corresponding to the thermal comfort limits are obtained from known design standards.