Abstract:
Provided are processes for improving a thermally transferred pattern on an imaged thermal transfer receiver, wherein the imaged thermal transfer receiver comprises a surface having an exposed portion and a non-exposed portion of one or more thermally transferred layer(s), comprising: (a) contacting said surface with an adhesive layer for a contact period to provide a laminate; (b) separating said adhesive layer from the laminate to provide a treated thermal transfer receiver having a surface substantially free of said non-exposed portion of one or more thermally transferred layer(s). The processes are useful in the fabrication of electronic devices including thin film transistors, circuits, electromagnetic interference shields, touchpad sensors and other electronic devices.
Abstract:
A process for making a radiation filter element comprises the steps of: exposing part of an assemblage to infrared radiation, the assemblage comprising a donor comprising (1) a support capable of transmitting infrared light, and (2) a transferable layer comprising a transferable material and an infrared-absorbing dye, the transferable layer of the donor being in contact with a receiver to provide an exposed assemblage comprising an exposed part of the transferable layer and an unexposed part of the transferable layer; separating the receiver and the support of the exposed assemblage to obtain an imaged receiver and a spent donor, wherein the imaged receiver comprises the receiver, a transferred portion of the transferable material and a transferred portion of the infrared-absorbing dye, said transferred portion of the IR dye having a color and the spent donor comprises the support and a retained portion of the transferable layer; and heating the transferred portion of the transferable material and the transferred portion of the infrared-absorbing dye at a temperature ranging from about 100 degrees Celsius to about 350 degrees Celsius for a period of time sufficient to thermally decolorize 50% to 100% of the transferred portion of the infrared-absorbing dye, the heating being in the absence of a thermal bleaching agent to provide a radiation filter element suitable for use in a liquid crystal display. Preferably color filter elements of this invention are used in liquid crystal display devices.
Abstract:
A planarizing element is described for use in a thermal imaging process. The planarizing element includes a support; a planarizing layer comprising a crosslinkable binder having a weight average molecular weight of about 20,000 to about 110,000.
Abstract:
A donor element is described for use in a thermal imaging process. The donor element includes a support; a heating layer; and a colorant containing thermally imageable layer comprising a crosslinkable binder having a number average molecular weight of about 1,500 to about 70,000. A process for making a color filter using a thermal imaging process, and a liquid crystal display using this color filter are also described.
Abstract:
Provided are processes for improving a thermally transferred pattern on an imaged thermal transfer receiver, wherein the imaged thermal transfer receiver comprises a surface having an exposed portion and a non-exposed portion of one or more thermally transferred layer(s), comprising: (a) contacting said surface with an adhesive layer for a contact period to provide a laminate; (b) separating said adhesive layer from the laminate to provide a treated thermal transfer receiver having a surface substantially free of said non-exposed portion of one or more thermally transferred layer(s). The processes are useful in the fabrication of electronic devices including thin film transistors, circuits, electromagnetic interference shields, touchpad sensors and other electronic devices.