Abstract:
Embodiments of the present disclosure present methods for calculating beamforming and spatial division multiple access (SDMA) weights utilizing minimum mean square error (MMSE) method. The beamforming and SDMA weights may also be normalized for further performance improvements.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to techniques for accurately determining a number of data symbols in a data packet. The techniques provided herein may allow a receiving terminal to correct number of symbol calculations based on such ambiguous length field values.
Abstract:
Systems and/or methods for communication that generate a plurality of spatial streams are disclosed. Each of the spatial streams comprises a plurality of symbols. At least a portion of a training sequence is distributed across a first symbol in a first one of the spatial streams and a second symbol in a second one of the spatial streams.
Abstract:
An ATM switching arrangement is disclosed in which two types of cells are distinguished. A first type of cells is marked as low loss and a second type of cells is marked as low delay. In the switching arrangement a cell buffer (9) is subdivided into a first memory area (LL) for the low loss cells and a second area (LD) for the low delay cells. In the case of the cell buffer (9) being completely filled, low loss cells get read-in priority over low delay cells. In reading out from the cell buffer low delay cells take priority over low loss cells, unless the low delay area is empty. It is also possible to set a threshold value for the content of the low loss area; when the content of the low loss area exceeds the threshold value, outputting of the low loss cells can then be started.
Abstract:
Certain aspects of the present disclosure present a technique for designing a signal (SIG) field of a mixed mode preamble transmitted to a plurality of user terminals. The SIG field can signal a number of spatial streams assigned to each user. The SIG field is designed such that a robust interference cancellation can be achieved at each user terminal.
Abstract:
Systems and/or methods for communication that generate a plurality of spatial streams are disclosed. Each of the spatial streams comprises a plurality of symbols. At least a portion of a training sequence is distributed across a first symbol in a first one of the spatial streams and a second symbol in a second one of the spatial streams.
Abstract:
Systems and/or methods for communication that generate a plurality of spatial streams are disclosed. Each of the spatial streams comprises a plurality of symbols. At least a portion of a training sequence is distributed across a first symbol in a first one of the spatial streams and a second symbol in a second one of the spatial streams.
Abstract:
Systems and/or methods for communication that generate a plurality of spatial streams are disclosed. Each of the spatial streams comprises a plurality of symbols. At least a portion of a training sequence is distributed across a first symbol in a first one of the spatial streams and a second symbol in a second one of the spatial streams.
Abstract:
Embodiments of the present disclosure present methods for calculating beamforming and spatial division multiple access (SDMA) weights utilizing minimum mean square error (MMSE) method. The beamforming and SDMA weights may also be normalized for further performance improvements. The transmitter selects one or more spatial dimensions of the channel matrices so that the number of spatial streams assigned to the receivers corresponding to the channel matrices is less than the number of receive antennas at the receivers.
Abstract:
Certain aspects of the present disclosure present a technique for designing a signal (SIG) field of a mixed mode preamble transmitted to a plurality of user terminals. The SIG field can signal a number of spatial streams assigned to each user. The SIG field is designed such that a robust interference cancellation can be achieved at each user terminal.