Abstract:
Certain aspects of the present disclosure generally relate to wireless communications, and more specifically to increased diversity for devices with limited communications resources. An example method generally includes transmitting data as a bundled transmission to a device with limited communications resources, the bundled transmission comprising multiple bursts wherein each burst spans a plurality of transmission time intervals (TTIs) and the same data is transmitted in each burst, and taking action to increase diversity (e.g., at least one of spatial diversity, time diversity, frequency diversity, etc.) for the bundled transmission.
Abstract:
A method for error detection within a passive optical network (PON), the method comprising receiving a first upstream optical signal that is copied at an optical splitter, converting the first upstream optical signal to a first electrical signal, receiving a second electrical signal that is converted from a second upstream optical signal that is copied at the optical splitter, and determining a corrected transmitted data stream using at least the first electrical signal and the second electrical signal, wherein the first upstream optical signal and the second upstream optical signal are copies of an upstream optical signal generated from a plurality of optical network units (ONUs).
Abstract:
The disclosure is related to selectively patching frame erasures in a first stream. A receiver receives the first stream, receives a second stream corresponding to the first stream, detects a missing frame in the first stream, and attempts to replace the missing frame in the first stream with a corresponding frame from the second stream.
Abstract:
Channel gain information is utilized for determining linear, or non-linear, combinations of transmitted symbols to increase symbol throughput. The base station recombines symbols directed to different receivers in response to the channel gain information. Channel gain information, which is subject to delay, has been previously utilized merely for predicting current channel gains prior at the time of transmission. The present invention, however, utilizes the channel gain information to increase coding efficiency even when the channel gain information is not utilized for predicting current channel gains. The method, appparatus and systems of the invention are applicable to any configuration of multiple wireless transmission to multiple receivers.
Abstract:
Control information (126) related to the reception of data (128) within a subframe (116) is transmitted over multiple subframes (113, 116) over multiple carrier (107, 108) from communication system infrastructure (102). A controller (134) in a mobile wireless communication device (104) reconstructs the control information (126) received over multiple subframes (113, 116) based on at least some control information (130) in a first physical control channel (118) in a first subframe (113) transmitted over a first carrier (107) and at least some other control information (132) in a second physical control channel (120) in a second subframe (116) transmitted over a second carrier (108).
Abstract:
A method and apparatus are described including performing hop-by-hop multicasting including network coding of data packets of a portion of content, wherein network coding further includes receiving an encoded data packet of a portion of content from an upstream transmitter, determining if the received encoded data packet is innovative, storing the received encoded data packet responsive to the first determination, determining if a full rank of the encoded data packet of the portion of content has been received, determining if an acknowledgement message for the portion of the content has already been sent to the upstream transmitter responsive to the second determination, sending the acknowledgement message to the upstream transmitter responsive to the third determination and discarding the received encoded data packet responsive to the first determination.
Abstract:
Disclosed is a method for verifying data packet integrity in a streaming-data channel. In the method, data packets are received from the streaming-data channel. Each data packet includes a data payload and a corresponding message integrity code. The received data packets are processed in a first processing mode, wherein the received data packets are forwarded to an application module before checking the integrity of the data packets using the respective message integrity codes. An integrity-check-failure measurement is generated for monitoring an integrity-check-failure rate in the first processing mode. If the integrity-check-failure measurement exceeds an integrity-check threshold, then the method transitions to a second processing mode. A received data packet is forwarded to the application module in the second processing mode only after passing the integrity check.