Abstract:
A nuclear reactor includes a reactor core disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor and includes a concrete floor located underneath the nuclear reactor. An ex vessel corium retention system includes flow channels embedded in the concrete floor located underneath the nuclear reactor, an inlet in fluid communication with first ends of the flow channels, and an outlet in fluid communication with second ends of the flow channels. In some embodiments the inlet is in fluid communication with the interior of the radiological containment at a first elevation and the outlet is in fluid communication with the interior of the radiological containment at a second elevation higher than the first elevation. The radiological containment may include a reactor cavity containing a lower portion of the pressure vessel, wherein the concrete floor located underneath the nuclear reactor is the reactor cavity floor.
Abstract:
A nuclear reactor core is disposed in a pressure vessel along with upper internals disposed in the pressure vessel above the reactor core. The upper internals include internal control rod drive mechanisms (CRDMs) mounted on a suspended support assembly. A hollow cylindrical central riser is disposed in the pressure vessel above the nuclear reactor core. A hollow cylindrical section is disposed in the pressure vessel below the hollow cylindrical central riser and surrounding the nuclear reactor core. A riser transition element connects with the hollow cylindrical central riser and the hollow cylindrical section to form a continuous hollow cylindrical flow separator. The suspended support assembly of the upper internals is suspended from the riser transition element. The pressure vessel may comprise upper and lower vessel sections connected by a mid-flange, with the riser transition element welded to the mid-flange by gussets extending outward and upward from the riser transition element to the mid-flange.
Abstract:
A reactor control interface includes a home screen video display unit (VDU) displaying blocks representing functional components of a nuclear power plant and connecting arrows that connect blocks that are providing the current heat sinking path for the nuclear power plant. Directions of the connecting arrows represent the direction of heat flow along the current heat sinking path. If the current heat flow path of the plant changes, the connecting arrows are updated accordingly. Additional VDUs include: a mimic VDU displaying a mimic of a plant component; a procedures VDU displaying a stored procedure executable by the plant; a multi-trend VDU trending various plant data; and an alarms VDU displaying side-by-side alarms registries sorted by time and priority respectively. If a VDU fails, the displays are shifted to free up one VDU to present the display of the failed VDU, and one display is shifted to an additional VDU.
Abstract:
A pedestal plug is sized to fit into a cladding of a nuclear fuel rod. A lower end plug is sized and shaped to plug the lower end of the nuclear fuel rod. One of the pedestal plug and the lower end plug includes a protrusion and the other of the pedestal plug and the lower end plug includes a hollow region into which the protrusion fits. In one embodiment the pedestal plug is a hollow cylindrical pedestal plug and the protrusion is disposed on the lower end plug. The protrusion disposed on the lower end plug suitably press fits into the hollow cylindrical pedestal plug. In a method of assembling a fuel rod of a nuclear reactor, the pedestal plug and the lower end plug are press fit together, and after the press fitting the lower end plug is welded to a cladding of the fuel rod with the pedestal plug disposed inside the cladding.
Abstract:
A fuel assembly including a plurality of fuel rods arranged mutually in parallel wherein the fuel rods include a fissile material, a plurality of guide tubes arranged in parallel with and interspersed amongst the fuel rods, an upper end fitting connected with upper ends of the guide tubes, and a lower end fitting connected with lower ends of the guide tubes. At least one of the upper end fitting and the lower end fitting includes a grid formed by interlocking metal strips secured together at intersections between the metal strips.
Abstract:
A suspended basket includes a plurality of plates, tie rods, and adjustable length threaded tie rod couplings connecting threaded ends of the tie rods with threaded features of the plates. Control rod drive mechanisms (CRDMs) with CRDM motors are mounted in the suspended basket, which is suspended in a pressure vessel above a nuclear reactor core to control insertion of control rods into the reactor core. In one embodiment each adjustable length threaded tie rod coupling is a turnbuckle coupling that includes a sleeve threaded onto the threaded end of the tie rod and onto the threaded feature of the plate, and the sleeve is rotatable to adjust the position of the tie rod respective to the plate. Guide frames may be mounted in the suspended basket between the CRDMs and the nuclear reactor core to guide portions of the control rods withdrawn from the nuclear reactor core.
Abstract:
In a nuclear reactor, an internal control rod drive mechanism (CRDM) includes a motor and a hydraulically driven element connected by at least one hydraulic line with at least one hydraulic connector disposed on a mounting plate of the internal CRDM. A support element mounted in the nuclear reactor includes at least one hydraulic connector. The internal CRDM is supported on the support element by its mounting plate with each hydraulic connector of the internal CRDM mated with a corresponding hydraulic connector of the support element. The hydraulically driven element may be a piston controlling SCRAM, driven by coolant water, and the coolant water pressure in the at least one hydraulic line is higher than the coolant water pressure in the nuclear reactor. The mating of each hydraulic connector of the internal CRDM with a corresponding hydraulic connector of the support element may be a leaky mating that leaks coolant water into the pressure vessel.
Abstract:
A nuclear reactor core is disposed in a pressure vessel along with upper internals disposed in the pressure vessel above the reactor core. The upper internals include internal control rod drive mechanisms (CRDMs) mounted on a suspended support assembly. A hollow cylindrical central riser is disposed in the pressure vessel above the nuclear reactor core. A hollow cylindrical section is disposed in the pressure vessel below the hollow cylindrical central riser and surrounding the nuclear reactor core. A riser transition element connects with the hollow cylindrical central riser and the hollow cylindrical section to form a continuous hollow cylindrical flow separator. The suspended support assembly of the upper internals is suspended from the riser transition element. The pressure vessel may comprise upper and lower vessel sections connected by a mid-flange, with the riser transition element welded to the mid-flange by gussets extending outward and upward from the riser transition element to the mid-flange.
Abstract:
A spacer grid includes intersecting straps defining cells with springs and dimples arranged to hold fuel rods passing through the cells. The springs are dual cantilevered springs with a bridge section between the distal end of the spring and the base. The distal portion of the spring is less stiff than the bridge section. The bridge section creates a bump which acts as a stop or travel limiter to prevent loss of grip force due to excessive spring deflection.
Abstract:
A nuclear reactor comprises a nuclear reactor core disposed in a pressure vessel. An isolation valve protects a penetration through the pressure vessel. The isolation valve comprises: a mounting flange connecting with a mating flange of the pressure vessel; a valve seat formed into the mounting flange; and a valve member movable between an open position and a closed position sealing against the valve seat. The valve member is disposed inside the mounting flange or inside the mating flange of the pressure vessel. A biasing member operatively connects to the valve member to bias the valve member towards the open position. The bias keeps the valve member in the open position except when a differential fluid pressure across the isolation valve and directed outward from the pressure vessel exceeds a threshold pressure.