Abstract:
A process for producing ethylbenzene is described in which benzene and ethylene are supplied to an alkylation reaction zone. Also added to the alkylation reaction zone is a C 3+ olefin in an amount of at least 200 ppm by weight of the ethylene supplied to the alkylation reaction zone. The benzene, ethylene and C 3+ olefin are contacted with an alkylation catalyst in the alkylation reaction zone to alkylate at least part of the benzene and produce an alkylation effluent comprising ethylbenzene, polyethylated benzene and at least one mono-C 3+ alkyl benzene. The alkylation effluent is separated into a first product fraction comprising ethylbenzene and a second fraction comprising polyethylated benzene and the at least one mono-C 3+ alkyl benzene. The second fraction is then contacted with benzene in the presence of a transalkylation catalyst to convert at least part of the polyethylated benzene to ethylbenzene and produce a transalkylation effluent.
Abstract:
In a process for producing phenol, benzene is contacted with a C3 alkylating agent comprising isopropanol under alkylation conditions such that at least part of the isopropanol reacts with the benzene to produce cumene. At least part of the resultant cumene is then oxidized in the presence of an oxidizing gas to produce an oxidation effluent comprising cumene hydroperoxide, unreacted cumene and a spent oxidizing gas. The unreacted cumene is separated from the oxidation effluent and is treated to remove nitrogenous impurities therefrom and produce a purified cumene stream, which is recycled to the oxidization step. At least part of the cumene hydroperoxide from the oxidation effluent is cleaved to produce a cleavage effluent comprising phenol and acetone. The phenol is recovered phenol from the cleavage effluent, whereas at least part of the acetone from the cleavage effluent is hydrogenated to produce isopropanol for recycle to the alkylation step.
Abstract:
A process is described for producing cumene comprising contacting benzene and a C3 alkylating agent under alkylation conditions with an alkylation catalyst in an alkylation zone to produce an alkylation effluent comprising cumene and alkylaromatic compounds heavier than cumene. Cumene is recovered from the alkylation effluent to leave a byproduct stream containing the alkylaromatic compounds heavier than cumene, which is separated into a polyisopropylbenzene-containing stream, an aromatic overhead stream, and a bottoms product. At least part of the aromatic overhead stream is recycled to the alkylation zone to reduce raw material consumption and improve cumene yield.
Abstract:
In a method of treating a residue stream from the production of bisphenol-A, the residue stream is contacted with an aqueous solution of a base under conditions effective to hydrolyze at least part of said residue stream into acetone and phenol and produce an effluent stream. Acetone is recovered from the effluent stream to produce a phenol-containing mixed phase stream which is substantially free of acetone and which contains water and unhydrolyzed heavy organic compounds. The phenol-containing mixed phase stream is then treated with a water-immiscible organic solvent to extract phenol and unhydrolyzed heavy organic compounds into said solvent and produce an organic phase containing the solvent, phenol and unhydrolyzed heavy aromatic compounds and an aqueous phase with reduced concentrations of phenol and unhydrolyzed heavy organic compounds. At least part of the phenol and the organic solvent are subsequently recovered from the organic phase.
Abstract:
A process is disclosed for alkylating benzene contained in a benzene-containing refinery gasoline stream also comprising at least 0.1 wt % of at least one C6 to C8 olefin. In the processs, the refinery gasoline stream is contacted under alkylation conditions with an alkylating agent selected from one or more C2 to C5 olefins in at least a first alkylation reaction zone and a second alkylation reaction zone connected in series to produce an alkylated effluent, which has reduced benzene content as compared with said refinery gasoline stream. All of the refinery gasoline stream is introduced into the first alkylation reaction stage, whereas an aliquot of the alkylated effluent is recycled and introduced to the second, but not the first, alkylation reaction zone.
Abstract:
An improved process is provided for producing bisphenol-A (BPA) comprising steps of (1) contacting benzene and a C 3 alkylating agent, e.g. propylene, isopropanol or propyl chloride, under alkylation conditions with an alkylation catalyst in a reaction zone to produce an alkylation effluent comprising cumene; (2) oxidizing the cumene from step (1) to produce the corresponding hydroperoxide; (3) cleaving the hydroperoxide from step (2), to produce product comprising phenol and acetone; (4) reacting acetone with a stoichiometric excess of phenol under acidic conditions, possibly in the presence of a cocatalyst or promoter, e.g. a thiol compound, to form a reaction product stream comprising crude bisphenol-A product, unreacted phenol, possibly unreacted acetone, possibly cocatalyst or promoter, water of condensation, and other reaction byproducts; (5) distilling in single or multistage the reaction product stream from step (4) to distill off a volatilized unreacted phenol stream, possibly an unreacted acetone stream, possibly a stream containing cocatalyst or promoter if present in step (4), and the water of condensation, while sending downstream to a BPA- phenol adduct crystallization and purification step, said purification step comprising one or more solid-liquid separation and wash steps, the resulting concentrated BPA phenolic feed stream consisting essentially of phenol in which the bisphenol-A and byproducts have been concentrated; (6) producing BPA- phenol adduct crystals by crystallization of the concentrated BPA phenolic feed stream in said crystallization, solid-liquid separation and wash steps with cooling for said crystallization by vaporization of an alkane hydrocarbon or mixture of hydrocarbons containing from 4 to 6 carbons, e.g. pentane; (7) separating the BPA-phenol adduct crystals by solid-liquid separation, such as, for example, by centrifugation or filtration, and washing same in one or multiple stages with a wash phenol stream which may include at least a portion of the volatilized unreacted phenol stream recovered from step (5), or spent wash or mother liquor from subsequent crystallization, solid-liquid separation, and wash steps, to produce final washed BPA-phenol adduct, final spent wash and final mother liquor; (8) cracking a stream comprising at least a portion, for example from about 0.5 to about 20 wt.%, preferably from about 1 to about 10 wt.%, more preferably from about 2 to about 7 wt.%, of said final mother liquor of step (7) in a reactor with basic or acidic cracking catalyst, for example caustic or aluminum chloride, under cracking conditions selected to recover a product comprising from about 60 to about 90 wt.% of said portion of said mother liquor stream as phenol having a purity level of from about 95 to about 100 wt.%, and from about 10 to about 40 wt.% of said cracked stream as heavy residue byproduct; and (9) recovering and feeding the phenol product of step (8) to step (4) and/or step (7).
Abstract:
A process for producing an alkylated aromatic compound from polyalkylated aromatic compound(s) having bi-alkylated aromatic compound(s) and tri-alkylated aromatic compound(s), comprising the step of contacting alkylatable aromatic compound(s) with the polyalkylated aromatic compound(s) at a transalkylation condition in the presence of a transalkylation catalyst. The transalkylation catalyst has high activity sufficient to achieve a ratio of bi- alkylated aromatic compound(s) conversion over tri-alkylated aromatic compound(s) conversion in a range of from about 0.5 to about 2.5.
Abstract:
Described is a catalyst system useful in the production of bisphenol-A comprises (a) an acidic heterogeneous catalyst comprising amorphous silica having organosulfonic acid groups chemically bonded thereto, wherein the catalyst has a pKa value of 3.5 or less; and (b) a catalyst promoter comprising at least one organic sulfur-containing compound.
Abstract:
In a method for producing a monoalkylated aromatic product, benzene and an alkylating agent are contacted with an alkylation catalyst in a first alkylation reaction zone under alkylation conditions to produce a first alkylation effluent comprising the monoalkylated aromatic product, polyalkylated aromatic product, unreacted benzene and C5, C6 and/or C7 non-aromatic compounds. A purge stream containing C5, C6 and/or C7 non-aromatic compounds and unreacted benzene is removed from the first alkylation effluent and is contacted with an alkylating agent in a second alkylation reaction zone in the presence of an alkylation catalyst under alkylation conditions to produce a second alkylation effluent comprising monoalkylated aromatic product, polyalkylated aromatic product and C5, C6 and/or C7 non-aromatic compounds. The monoalkylated aromatic product is recovered from the first and second alkylation effluents and at least part of the C5, C6 and/or C7 non-aromatic compounds in the second alkylation effluent is purged.
Abstract:
A process is described for alkylating benzene contained in a refinery gasoline stream, in which the refinery gasoline stream is contacted with an alkylating agent comprising one or more C2 to C5 olefins in an alkylation reaction zone under alkylation conditions to produce an alkylated effluent. The alkylation reaction zone comprises at least a first alkylation reaction stage and a second alkylation reaction stage and a portion of said alkylating agent is fed to each of said first and second alkylation reaction stages so that, although the molar ratio of alkylatable aromatic to alkylating agent in the total feed to the alkylation reaction zone is less than 1, the molar ratio of alkylatable aromatic to alkylating agent at the inlet of each of the first and second alkylation reaction stages is at least 1.0..