Abstract:
The invention relates to a process for the continuous polymerization of one or more α-olefin monomers of which at least one is ethylene or propylene comprising the steps of: (1) feeding the one or more α-olefins to a vertically extended reactor suitable for the continuous fluidized bed polymerization of one or more a-olefin monomers of which at least one is ethylene or propylene, which reactor is operable in condensed mode, wherein the reactor comprises a distribution plate and an integral gas/liquid separator located below the distribution plate, (2) withdrawing the polyolefin from the reactor (3) withdrawing fluids from the top of the reactor, (4) cooling the fluids to below their dew point, resulting in a bottom recycle stream, (5) introducing the bottom recycle stream under the distribution plate, (6) separating at least part of the liquid from the bottom recycle stream using the integral separator to form a liquid phase and a gas/liquid phase, (7) feeding the liquid phase to an external pipe, (8) adding a solid polymerization catalyst to the liquid phase in the external pipe resulting in the formation of a slurry stream comprising prepolymer and/or polymer and (9) feeding the slurry stream comprising the prepolymer and/or polymer into the reactor above the distribution plate, wherein the prepolymer and/or polymer are present in the slurry stream in an amount of from 0.01 to 99wt% based on the total slurry stream upon introduction of the slurry stream into the reactor
Abstract:
The invention is directed to a process for the gas phase polymerisation of one or more olefin monomers in a fluidised bed reactor in a dry mode or in a (super) condensed mode with a gas stream comprising an inert gas characterised in that the inert gas comprises a mixture of inert components: (1) nitrogen; (2) a gas heat capacity increasing agent (3) a sorption promoting agent and (4) a polymer swelling agent. The inert gas may comprise (1 ) 5-60 % by mol nitrogen (2) 10- 90 % by mol ethane (3) 1 -50 % by mol % n-butane and (4) 0.1 -10 % by mol % n-pentane or iso-pentane.
Abstract:
The invention relates to a system suitable for the continuous polymerization of one or more α-olefin monomers of which at least one is ethylene or propylene comprising a reactor (8), a compressor (400), a cooling unit (5) and an external pipe (11) for the production of a prepolymer and/or polymer, wherein the reactor comprises a first outlet for a top recycle stream (40), wherein the system comprises apparatus for condensing the top recycle stream into a bottom recycle stream, wherein the reactor comprises a first inlet for receiving a bottom recycle stream (10), wherein the first inlet for receiving the bottom recycle stream is located underneath the distribution plate (6), wherein the reactor comprises an integral separator (1) for separation of the bottom recycle stream into a gas/liquid and a liquid phase, wherein the integral separator is located underneath the distribution plate (6), wherein the first inlet of the integral separator is connected to a first outlet for a liquid phase, wherein the first outlet for the liquid phase is connected to the second outlet of the reactor for the liquid phase, wherein the second outlet of the reactor provides the liquid phase to the first inlet of the external pipe (11), wherein the external pipe comprises a second inlet for receiving a solid polymerization catalyst (20), wherein the first outlet of the external pipe is connected to a second inlet of the reactor for receiving a slurry phase comprising the prepolymer and/or polymer, wherein the reactor comprises a third outlet for providing polyolefin (30), wherein the system comprises a first inlet for receiving a feed (60) and optionally a second inlet for receiving a feed (70).
Abstract:
The invention is directed to a process for the gas phase polymerisation of one or more olefin monomers in a fluidised bed reactor in a dry mode or in a (super) condensed mode with a gas stream comprising an inert gas characterised in that the inert gas comprises a mixture of inert components: (1) nitrogen; (2) a gas heat capacity increasing agent (3) a sorption promoting agent and (4) a polymer swelling agent. The inert gas may comprise (1 ) 5-60 % by mol nitrogen (2) 10- 90 % by mol ethane (3) 1 -50 % by mol % n-butane and (4) 0.1 -10 % by mol % n-pentane or iso-pentane.
Abstract:
The invention relates to a multi-zone reactor suitable for the continuous fluidized bed polymerization of one or more α-olefin monomers of which at least one is ethylene or propylene, which multi-zone reactor is operable in condensed mode, which multi-zone reactor comprises a first zone, a second zone, a third zone, a fourth zone and a distribution plate, wherein the first zone is separated from the second zone by the distribution plate, wherein the multi-zone reactor is extended in the vertical direction wherein the second zone of the multi-zone reactor is located above the first zone and wherein the third zone of the multi-zone reactor is located above the second zone, and wherein the fourth zone of the multi-zone reactor is located above the third zone wherein the second zone contains an inner wall, wherein at least part of the inner wall of the second zone is either in the form of a gradually increasing inner diameter or a continuously opening cone, wherein the diameter or the opening increases in the vertical direction towards the top of the multi-zone reactor wherein the third zone contains an inner wall, wherein at least part of the inner wall of the third zone is either in the form of a gradually increasing inner diameter or a continuously opening cone, wherein the diameter or the opening increases in the vertical direction towards the top of the multi-zone reactor wherein the largest diameter of the inner wall of the third zone is larger than the largest diameter of the inner wall of the second zone.
Abstract:
A process for the polymerisation of ethylene or the copolymerisation of ethylene and alpha-olefins in the presence of a catalyst system comprising- as components (a) a transition metal compound, (b) a non-aluminoxane activator, and (c) optionally a support, comprises the use of a prepolymer prepared by contact of the catalyst components with ethylene and/or one of more alpha-olefins at a temperature in the range 60ºC to 100ºC. The prepolymer may be isolated or used in situ for the polymerisation of ethylene or the copolymerisation of ethylene and alpha-olefins in particular 1-hexene. By use of the process thermal stability of the catalyst is improved leading to increased activity without any deterioration in polymer morphology.