Abstract:
Method of modifying dissolution rate of a plurality of particles in an aqueous-based solvent by adding hydrophobic surface modified nanoparticles to the plurality of particles, and exposing the plurality of particles to the aqueous-based solvent.
Abstract:
Presently described are methods of inhibiting water vapor adsorption of a powder and methods of storing a powder at increased humidity level. The methods comprise providing adding discrete hydrophobic nanoparticles to a plurality of particles.
Abstract:
Compositions are disclosed comprising a plurality of conductive particles wherein each conductive particle comprises a plurality of surface-modified nanoparticles that are covalently bonded to the surface of the conductive particle. Compositions are also disclosed wherein the plurality of conductive particles comprising a plurality of surface-modified nanoparticles covalently bonded thereto, are provided in an organic vehicle.
Abstract:
Method comprising contacting a hydrocarbon-bearing formation with a composition comprising solvent and a fluoropolyether compound. The fluoropolyether compound: is represented by formula Rf-[C(0)-NR1-X'-(Z)m]n; or comprises at least one first divalent unit represented by formula (I) and, at least one of, a second divalent unit comprising a pendant Z group; or a monovalent unit comprising a thioether linkage and at least one terminal Z group. Each Rf is independently a fluoropolyether group. Rf is a monovalent or divalent fluoropolyether group, and each Z group is independently -P(O)(OY)2 or -O-P(O)(OY)2. Hydrocarbon-bearing formations treated according to this method are also disclosed.
Abstract:
Methods of treating a hydrocarbon-bearing formation having brine and liquid hydrocarbons and treated hydrocarbon-bearing formations. The methods include contacting the hydrocarbon-bearing formation with a composition comprising solvent and a fluorinated anionic surfactant. In some embodiments, the solvent solubilizes the brine in the hydrocarbon-bearing formation without causing the fluorinated anionic surfactant to precipitate. In some embodiments, the solvent includes at least one of a polyol or polyol ether independently having from 2 to 25 carbon atoms and at least one of water, a monohydroxy alcohol, an ether, or a ketone, wherein the monohydroxy alcohol, the ether, and the ketone each independently have up to 4 carbon atoms.
Abstract:
The present invention includes compositions and method for treating a hydrocarbon-bearing clastic formation having brine, the method comprising: contacting the hydrocarbon-bearing clastic formation with a fluid, wherein the fluid at least one of at least partially solubilizes or at least partially displaces the brine in the hydrocarbon-bearing clastic formation; and subsequently contacting the hydrocarbon-bearing clastic formation with a composition, the composition comprising: a nonionic fluorinated polymeric surfactant, and solvent, wherein when the composition is contacting the hydrocarbon-bearing clastic formation, the nonionic fluorinated polymeric surfactant has a cloud point that is above the temperature of the hydrocarbon-bearing clastic formation.
Abstract:
A transfer article that includes a liner with multi-sized particles disposed thereon, wherein the multi-sized particles include a plurality of dominant hydrophilic particles having an average primary particle size of no greater than 200 microns, and a plurality of discrete hydrophobic nanoparticles.
Abstract:
A method of modifying a surface of a hydrocarbon-bearing formation is disclosed. The method includes contacting the surface of the hydrocarbon-bearing formation with a fluorinated amine, and the surface of the hydrocarbon-bearing formation includes a carbonate. The method can typically include introducing a treatment composition comprising solvent and at least one of the fluorinated amine or a salt thereof into the carbonate hydrocarbon-bearing formation. Hydrocarbon-bearing formations treated according to the method are also disclosed. Certain fluorinated amines useful for treating carbonate hydrocarbon-bearing formations and methods of making them are also disclosed.
Abstract:
A transfer article that includes a liner with multi-sized particles disposed thereon, wherein the multi-sized particles include a plurality of dominant hydrophilic particles having an average primary particle size of no greater than 200 microns, and a plurality of discrete hydrophobic nanoparticles.
Abstract:
A fixed abrasive pad (100) in the form of a structured abrasive article is provided that has a structured abrasive layer (120) disposed on a backing (110). The structured abrasive layer (120) includes a polymeric binder, abrasive particles dipersed in the binder and a nonionic polyether surfactant dispersed in the binder. The abrasive particles have a mean particle size of less than 200 nm and the surfactant is in the binder in an amount of from 0.75 to 2.2 weight percent based upon the total weight of the structured abrasive layer. A method of abrading a workpiece using the provided fixed abrasive pad is also provided.