Abstract:
The present invention relates to a wireless communication system for downlink transmitting, through a plurality of orthogonal carriers and according to a non-orthogonal multiple access transmission scheme in a multiple-input single-output configuration, a plurality of messages towards, respectively, a plurality of users. At the transmitter side, a power allocation strategy subjected to a total power budget constraint and a linear filter computation based on the channel state information are jointly designed to meet a prescribed fairness constraint. The computed linear filter is adapted to balance interference caused to each user by the users being served at identical resources and is then used through an intra-carrier lattice-based non-linear precoding to mitigate the interference and also through a linear precoding to output a signal to be transmitted on the respective carrier towards each user. At the receiver side, the plurality of messages is finally recovered thanks to a simple single-user decoder.
Abstract:
L'invention concerne un procédé de décodage d'un signal reçu sur au moins deux antennes de réception, ledit signal ayant subi avant émission un codage espace/temps à l'aide d'un code construit à partir d'une algèbre sur un corps commutatif et étant émis sur au moins deux antennes d'émission. Selon l'invention, un tel procédé met en œuvre : - une étape de prétraitement (21) dudit signal reçu ( Y ) comprenant les sous-étapes suivantes : détermination d'une matrice représentative du canal de transmission ( H ); normalisation de ladite matrice représentative du canal de transmission et dudit signal reçu; approximation algébrique de ladite matrice de canal normalisée, à partir d'une matrice ( U ) sélectionnée dans ladite algèbre et présentant un déterminant égal à 1; - une étape de décodage espace/temps (22) du signal reçu normalisé ( Y 1 ), à l'aide de l'approximation algébrique de ladite matrice de canal normalisée.
Abstract:
L'invention concerne un procédé de décodage d'un signal reçu par un récepteur comprenant au moins une antenne de réception. Selon l'invention, un tel procédé comprend : une étape de sélection (21), parmi au moins deux techniques disponibles dans ledit récepteur, d'une technique de décodage représentative d'un codage espace/temps mis en œuvre en émission, ladite étape de sélection tenant compte d'au moins un critère de sélection; une étape de décodage (22) dudit signal mettant en œuvre la technique de décodage sélectionnée.
Abstract:
A data processing system having a binary neural network architecture for receiving a binary network input and in dependence on the network input propagating signals via a plurality of binary processing nodes, in accordance with respective binary weights, to form a network output, the data processing system being configured to train each node of the plurality of binary processing nodes by implementing the node function as an error correcting code (e.g. an r-th-order Reed-Muller code such as the 1-st order Reed-Muller code or cosets of the lst-order Reed-Muller code) function to identify a set of binary weights by channel decoding (e.g. fast Walsh-Hadamard transform algorithm) which minimize, for a given input to that node, any error between the node's output when formed in accordance with the node's current binary weights and a preferred output from the node and to update the weights of that node to be the identified set of binary weights. This training is performed without storing and/or using any higher arithmetic precision weights or other components.
Abstract:
Encoder (400) for encoding K information bits into a code word of length N´ on the basis of a polar code of length N, wherein N is a power of 2 and greater than or equal to N´. The encoder (400) comprises a memory (403) storing a plurality of bit indices, wherein the plurality of bit indices comprise a set of N frozen bit indices associated with the polar code of length N, a set of N/2 puncturing bit indices and/or a set of N/2 shortening bit indices and a processor (401) configured to retrieve at least a subset of the plurality of bit indices from the memory (403), to encode the K information bits using the polar code of length N for obtaining encoded data of length N and to reduce the number of bits of the encoded data to the length N´ for obtaining the code word of length N´.
Abstract:
The present invention relates to a wireless communication system for downlink transmitting, through a plurality of orthogonal carriers and according to a non-orthogonal multiple access transmission scheme in a single-input single-output configuration, a plurality of messages towards, respectively, a plurality of users. At the transmitter side, a power allocation strategy subjected to a total power budget constraint is implemented to meet a prescribed fairness constraint. The interference caused to each other by the users served at identical resources is efficiently mitigated through an intra-carrier lattice-based non-linear precoding process operating sequentially and taking account of the power allocation strategy, the users' ordering and the channel state information of each channel linking the respective carrier to each user. At the receiver side, the plurality of messages is respectively recovered by each user thanks to a respective simple single-user decoder, which decodes only its intended signal without requiring any successive interference cancellation procedure.
Abstract:
The present invention relates to a device (102b, 104b) for generating a polar code ϰ N of length N and dimension K on the basis of a transformation matrix G N of size N x N , wherein the transformation matrix G N is based on a first matrix G N r of size N r x N r , and on a second matrix G Nd of size N d x N d , wherein N = N r ⋅ N d , and wherein the polar code ϰ N is given by ϰ N = υ N ⋅ G N , wherein υ N = (υ 0 ,..., υ N -1 )is a vector of size N , υ i , i = 0,... N −1, corresponding to an information bit if i ε I , I being a set of K information bit indices, and υ i = 0, if i ε F , F being a set of N − K frozen bit indices. The device (102b, 104b) comprises a processor (102c, 104c) configured to generate a reliability vector v GNr = [v 1 ,... v Nr ], wherein v i represents a reliability of an i -th input bit of a code generated by the first matrix G Nr , generate a distance spectrum vector d GNd = [d 1 ,..., d Nd ] of a code generated by the second matrix G Nd , wherein d j represents a minimum distance of the code generated by the second matrix G Nd of dimension j , determine the set of K information bit indices I on the basis of the reliability vector v GNr and of the distance spectrum vector d GN , and generate the polar code c N on the basis of the set of K information bit indices I .
Abstract:
The present invention is directed to encoding of information bit sequences by use of an encoding device having more than two encoding entities and to decoding of output codewords by a decoding device having more than two decoding entities. The encoding and the decoding are executed in view of the fact that output codewords, generated by the encoding device, are transmitted to the decoding device via a channel, via which two or more user devices transmit the respective output codewords concurrently.
Abstract:
A communication device (40) comprises a code constructor (41) and a channel encoder (42). The channel encoder (42) is configures to encode a number of input symbols u to a number of output symbols x using a polar code of a code length N with a transformation matrix GN. The code constructor (41) is configured to compose the transformation matrix GN from at least two different polar code Kernels.
Abstract:
La présente invention concerne une méthode de décodage par réseau de points d'un signal reçu par un terminal récepteur multi-antenne dans un système de télécommunication multi-source. Le signal reçu est représenté sous forme vectorielle y = Hx + w où x est un vecteur représentant des symboles émis par différentes sources, w est un vecteur de bruit affectant le signal reçu et H est une matrice. La distance minimale d H au sein du réseau de points engendré par H est d'abord estimée (220). Une matrice augmentée (formule I) est ensuite (240) construite à partir d' une valeur particulière de θ et on effectue (250) une réduction LLL de la matrice ainsi augmentée pour obtenir une matrice réduite (formule II) où Ũ est une matrice unimodulaire. Enfin, on estime (260) le vecteur x représentant les symboles émis à partir des vecteurs colonne de la matrice Ũ.